Simple IPhone Telescope Mount

This cheap and easy hack will let you use your old smart phone to take pictures and videos of the view through a telescope. [Xobmo] built the connector for just 55 cents. Apart from our concerns about scratching the lens when inserting the phone in the bracket we love the idea.

He was given the Celestron Powerseeker 70AZ as a gift from his wife last Christmas. He looked around the Internet and saw that there are already some solutions for recording video using an iPhone 3GS. This design on Thingiverse would be perfect, but he doesn’t have access to a 3D printer and ordering it form a service would cost almost $50. But when he got to thinking about it, all he needed was a ring to fit on the telescope and a way to connected the iPhone to it. He headed down to the hardware store and picked up a PVC coupler. After working with a hack saw and drill he ended up with a slot with two wings on it. Just slip the phone in and slide the ring on the eyepiece. You can see some action shots, and get a look at the mount itself, in the clip after the break.

Continue reading “Simple IPhone Telescope Mount”

Dead Motherboard Wall Hides An LED Marquee

dead-motherboard-led-marquee

[Jared] is a computer technician so he has no problem getting his hands on broken motherboards. It looks like he tends to save the more interesting colors and has finally found a use for the waste. He built this wall art which also acts as an LED marquee.

He came up with the size and shape — 18″ by 48″ — because it meshes well with a sheet of MDF. The outline allows for a grid made up of 2″ square pixels arranged seven high and twenty-one wide. The top and bottom rows will serve as a frame for the lights, which still leaves the five pixels necessary to display characters. From there he started wiring up the LED array, which is shown in the testing phase in the clip after the break. Each pixel is cordoned off by a frame of basswood which [Jared] fabricated on the table saw. The project is finished up by cutting the motherboards down to size and mounting them with threaded rod and nuts. The board chunks are not transparent but they’re smaller than the grid so the LEDs will make the edges glow.

This reminds us of the motherboards used to mimic stained glass from several years back.

Continue reading “Dead Motherboard Wall Hides An LED Marquee”

Sous Vadar

[Craig] pulled off a beautiful build with his Sous Vader project. The name is a geeky spin on sous vide, a method of cooking foods in water held at a precise temperature. Building your own setup at home saves a ton of money, but it’s also a lot of fun. This explains the frequency with which we see these builds here at Hackaday.

So this one has a flashy name, a fine-looking case, but the beauty continues on the internals. [Craig] posted an image with the cover off of the control unit and it’s absolutely gorgeous inside. Part of the reason for this is the circuit board he spun for the project which hosts the ATmega328 and interfaces with the LCD, buttons, temperature sensor, and mains-switching triac. But most of the credit is due to his attention to detail. The image on the right shows him prototyping the hardware. Since some of his meals take 20 hours to prepare it’s no wonder he found an out-of-the-way closet in which to do the testing.

Make sure to read all the way to the bottom of the post for some cooking tips. For instance, since he doesn’t have a vacuum sealer he uses zipper bags — lowering them into water to push out the air as they are sealed.

Stuffing An NES Into An FPGA

megaman_fpga

When the developer of the µTorrent torrent client and the ScummVM  LucasArts adventure game interpreter gets bored, something cool is bound to happen. Luckily for us, [Ludde] was a bit listless over Christmas, and with more time than energy to burn, implemented a Nintendo Entertainment System on an FPGA dev board.

The NES was powered by a Ricoh 2A03 CPU, a chip nearly identical to the 6502 found in the Commodore 64s and Apple IIs of the early 1980s. There are a few differences between the two, though: the NES CPU includes an Audio Processing Unit on the chip and is connected to a very cool Picture Processing unit elsewhere on the NES. [Ludde] put all these chips in his Spartan-6 FPGA with a lot of Verilog code.

The rest of the system – the RAM, display output, and controller input comes from the peripherals attached to the FPGA dev board. [Ludde]’s specific board didn’t have a good digital to analog converter, so the composite output was traded for a VGA output. It’s not a completely accurate color pallet, but it’s still an amazing piece of work for someone who was simply bored.

Raspi-controlled RGB LED Strip Display

snake

[4RM4] over at the Stuttgart hackerspace Shackspace ran into a guy selling individually addressable RGB LED strips when he attended the 29th Chaos Communication Congress last December. He had a Raspberry Pi with him, and after a little bit of work he rigged up an LED display that wrapped around a trash can. A respectable hack, but not quite ready for prime time.

After getting back to the Shackspace, [4RM4] decided to go in a more classic direction by building an RGB Snake clone. A few neat features were implemented like a high score list, a free play bot, and a clock.

To control his pixel-munching snake, [4RM4] used a Wii Nunchuck controller hooked up to the Raspberry Pi’s GPIO pins. It looks like a whole lot of fun, and given the absurdly high scores shown in the video after the break, it looks like this build is getting a lot of use at the Shackspace.

Continue reading “Raspi-controlled RGB LED Strip Display”

Retrotechtacular: How A Watch Works

how-a-mechanical-watch-works

Anyone who has ever tried to keep time with an electronic project will have respect for a timepiece that stays accurate over the span of months or more. We think it’s even more respectable when it comes to mechanical watches. This video was made by the Hamilton watch company back in 1949 to explain the basic processes behind a precision mechanical timepiece.

It takes several minutes to get to the meat of the presentation, but we think you’ll find the introduction just as entertaining as the explanation itself. When it does come time to look inside the watch a set of large pieces is used to help illustrate the workings of each part. The clip (which is also embedded after the break) does a great job with these demonstrations, but almost immediately you’ll come to realize the complexity wrapped up in an incredibly tiny package. It goes on to explain the low-friction properties that are brought to the table by the jewel bearings. Enjoy!

Continue reading “Retrotechtacular: How A Watch Works”

XBMC Workaround For Android Hardware Video Acceleration

An unofficial, but fully functional release of XBMC should make the uber-popular media center software work with almost all Android devices. About six months ago the developers of XBMC announced that it had been ported for Android. That was true, but there was one caveat. The port was made functional on one specific Android device. The hardware company Pivos paid for the devs to add support for their Xios DS device. Although that build could be run on other Android devices, the hardware video acceleration could only be use if it was the same as the Xios. When not using the hardware acceleration many common video formats would only play at a few frames per second, if at all.

This build is a workaround and is not officially supported. What it brings to the table is the ability to use an external media player with XBMC. This way any video format which your Android device is capable of playing (with hardware acceleration) can be launched from XBMC but will be played by the native video application. We haven’t tried it for ourselves. If you have we’d love to hear about your experience in the comments.

[via Ars Technica]