Player Ukulele Pulls Your Strings

Automated musical instruments aren’t a new idea. From water chimes to player pianos, they’ve been around for a while. But we can’t remember the last time we saw a player ukulele. [Zeroshot] shows us one, though, and it uses an Arduino. You can see and hear it in the video below.

Honestly, with all the stepper motors, linear rails, and belts, we thought it looked like a 3D printer, at least up at the business end. [Zeroshot] thought it would be easier to build a robot than to actually learn to play the instrument. We aren’t sure we agree.

Continue reading “Player Ukulele Pulls Your Strings”

Be Your Own DJ With QN8066 And An Arduino Library

The QN8066 is a fun little FM transmitter chip. It covers the full FM broadcast band and has built-in DSP. You would find this sort of part in car cell phone adapters before every vehicle included Bluetooth or an AUX port.  [Ricardo] has created an Arduino library to bring the QN8066 to the masses.

The chip is rather easy to use – control is handled with a common I2C interface. All the complex parts – Phase Locked Loop (PLL), RF front end, power management, and audio processing are all hidden inside. [Ricardo’s] library makes it even easier to use. One of the awesome features of the 8066 is the fact that it handles Radio Data System (RDS). RDS is the subcarrier datastream that allows FM stations to inject information like song title and artist into the signal. The data is then displayed on your radio screen.

You can find the source to [Ricardo’s] library on GitHub. Using it is as simple as picking it up from the Arduino IDE.

If you are looking for an RDS-enabled radio to test out your QN8066 design, you wouldn’t do too bad with this Gameboy cartridge receiver.

Click through the break for a video from [Ricardo] explaining his QN8066 design. Continue reading “Be Your Own DJ With QN8066 And An Arduino Library”

Hackaday Podcast Episode 270: A Cluster Of Microcontrollers, A Rocket Engine From Scratch, And A Look Inside Voyager

Join Hackaday Editors Elliot Williams and Tom Nardi as they get excited over the pocket-sized possibilities of the recently announced 2024 Business Card Challenge, and once again discuss their picks for the most interesting stories and hacks from the last week. There’s cheap microcontrollers in highly parallel applications, a library that can easily unlock the world of Bluetooth input devices in your next project, some gorgeous custom flight simulator buttons that would class up any front panel, and an incredible behind the scenes look at how a New Space company designs a rocket engine from the ground up.

Stick around to hear about the latest 3D printed gadget that all the cool kids are fidgeting around with, a brain-computer interface development board for the Arduino, and a WWII-era lesson on how NOT to use hand tools. Finally, learn how veteran Hackaday writer Dan Maloney might have inadvertently kicked off a community effort to digitize rare documentation for NASA’s Voyager spacecraft.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download your very own copy of the podcast right about here.

Continue reading “Hackaday Podcast Episode 270: A Cluster Of Microcontrollers, A Rocket Engine From Scratch, And A Look Inside Voyager”

Easily Add Link Cable Support To Your Homebrew GBA Game

The Game Boy Advance (GBA) link cable is the third generation of this feature which originated with the Gameboy. It not only allows for peripherals to be connected, but also for multiplayer between GBAs – even with just one game copy – and item sharing and unlocking of features in specific games. This makes it an interesting feature to support in today’s homebrew GBA games and applications, made easy by libraries such as [Rodrigo Alfonso]’s gba-link-connection.

This C++  library can be used in a number of ways: either limited to just the physical link cable, just the wireless link option or both (universal link). These support either 4 (cable) or 5 (wireless) players to be connected simultaneously. As additional options there are the LinkGPIO.hpp and LinkSPI.hpp headers which allow the link port to be used either as a generic GPIO, or as an SPI link (up to 2 Mb/s). The multiboot feature where a single ROM image is shared among connected GBAs is supported with both wired and wireless links.

It’s heartening to see that a device which this year celebrates its 23rd birthday is still supported so well.

Thanks to [gudenau] for the tip.

Wiring An SD Card To A Handspring PDA’s 68K Bus With Only Three SOT23s

In 1998 the founders of Palm had a bit of a falling out with the wildly successful PDA company’s new owners. They set up a new company called Handspring, which enabled them to make PDAs again in the way they preferred, This resulted in the Handspring Visor line of PDAs, which featured a big cartridge slot called the Springboard Expansion slot. Much like a Gameboy, you could put in a range of modules, ranging from games to cameras to memory expansion and more. Since these modules connect directly to the internal Motorola 68k-based microprocessor, you could make a module either to comply with this standard or if you’re like [Dmitry], you’d figure out a way to get an SPI device like an SD card to communicate and expand storage.

Editor note: Dmitry’s design isn’t the first SD/MMC interface for the Visor. Portable Innovation Technology’s SD MemPlug Module supported SD/MMC way back in 2002. However – MemPlug was a commercial product, while Dmitry’s work is open source.

Continue reading “Wiring An SD Card To A Handspring PDA’s 68K Bus With Only Three SOT23s”

Raspberry Pi Pico Becomes Emotionally-Aware Music Visualizer

Back in the late 1990s and early 2000s, the nascent world of digital music was incredibly exciting. We all cultivated huge MP3 collections and spent hours staring at the best visualizers Winamp and Windows Media Player had to offer. [Rafael] and [Eric] decided to bring back those glory days with their music visualizer that runs on the Raspberry Pi Pico.

The design is quite interesting, going beyond the usual simplistic display of waveforms and spectrograms. Instead, the Pi Pico uses a Fast Fourier Transform analysis to determine the frequencies of the music, ideally then to determine the key, and thus the mood, of the tune.  Then, the visualizer uses different colors to represent those moods, such as green for happy music in a major key, or deeper blues for a sad piece in a minor key. The output of the visualizer is via Bruce Land’s 8-bit color VGA library, which allows the Pi Pico to drive a monitor directly.

Whether the visualizer really gets the music is up for debate.  The visuals simply don’t look sad and depressing enough when listening to Hallelujah, but maybe that’s just the lack of Jeff Buckley’s vocals in the instrumental. Furthermore, getting an FFT analysis to pull out reliable musical information from an audio recording is finicky to say the least. In any case, the blocky and colorful animations are nice to watch nonetheless. They’d make an excellent basis for visuals at your next underground chiptune show, that much is for certain. Video after the break.

Continue reading “Raspberry Pi Pico Becomes Emotionally-Aware Music Visualizer”

Wolfenstein 3D Clone Makes Arduboy Debut

The 8-bit Arduboy isn’t exactly a powerhouse by modern gaming standards, or even really by old school standards for that matter. But for the talented developers that produce software for the system, that’s just part of the challenge. To date the monochromatic handheld has seen miniaturized takes on many well-known games, with several taxing the hardware beyond what most would have assumed possible.

But the latest entry into this catalog of improbable software, WolfenduinoFX, is easily the most technically impressive. As the name implies, this is a “demake” of 1992’s iconic Wolfenstein 3D. It features 10 levels based on the original game’s shareware release, with the enemies, weapons, and even secret rooms lovingly recreated for the Arduboy’s 128 x 64 OLED display.

Arduboy FX Mod-Chip

Now, those of you who have experience working with the ATMega32u4 microcontroller at the heart of the Arduboy might think this is impossible…and you’d be right. The only way developer [James Howard] was able to pull this feat off was by leveraging the extended flash memory offered by the Arduboy FX.

This upgrade, which was developed in conjunction with the community, allows the handheld to hold hundreds of games by loading them from an SPI flash chip. For WolfenduinoFX, that flash chip is used to hold graphical assets for the game that would otherwise be too large to fit on the MCU alone.

When we looked at the Arduboy FX back in 2021, it was clearly a must-have upgrade, so it’s no wonder that the newest version of the handheld has the capability built-in. Now that games are actually requiring the expanded flash to function, it seems we’ve officially entered into a new era for the quirky little handheld that [Kevin Bates] first sent our way nearly a decade ago. Long live the Arduboy!

Continue reading Wolfenstein 3D Clone Makes Arduboy Debut”