A Simple 6DOF Hall Effect ‘Space’ Mouse

The 3DConnexion Space mouse is an interesting device but heavily patent-protected, of course. This seems to just egg people on to reproduce it using other technologies than the optical pickup system the original device uses. [John Crombie] had a crack at building one using linear Hall effect sensors and magnets as the detection mechanism to good — well — effect.

Using the SS49E linear Hall effect sensor in pairs on four sides of a square, the setup proves quite straightforward. Above the fixed sensor plate is a moveable magnet plate centred by a set of springs.  The magnets are aligned equidistant between each sensor pair such that each sensor will report an equal mid-range signal with zero mechanical displacement. With some simple maths, inputs due to displacements in-plane (i.e., left-right or up-down) can be resolved by looking at how pairs compare to each other. Rotations around the vertical axis are also determined in this manner.

Tilting inputs or vertical movements are resolved by looking at the absolute values of groups or all sensors. You can read more about this by looking at the project’s GitHub page, which also shows how the to assemble the device, with all the CAD sources for those who want to modify it. There’s also a detour to using 3D-printed flexures instead of springs, although that has yet to prove functional.

On the electronics and interfacing side of things, [John] utilises the Arduino pro micro for its copious analog inputs and USB functionality. A nice feature of this board is that it’s based on the ATMega32U4, which can quickly implement USB client devices, such as game controllers, keyboards, and mice. The USB controller has been tweaked by adjusting the USB PID and VID values to identify it as a SpaceMouse Pro Wireless operating in cabled mode. This tricks the 3DConnexion drivers, allowing all the integrations into CAD tools to work out of the box.

We do like Space Mouse projects. Here’s a fun one from last year, an interesting one using PCB coils and flexures, and a simple hack to interface an old serial-connected unit.

 

V-Slot Wheels Or Linear Rails?

In the early days of 3D printers, most builds used smooth rods and bearings that rode on them. But these days, printers are shipping with either V-slot extrusions with Delrin wheels or linear rails. Which is best? Everyone seems to have an opinion, but [Spencer] decided to compare them using some well-defined experiments, and he shares his results in the video below.

Common wisdom is that linear rails create a better print quality, but [Spencer] didn’t really find that much difference. He does admit, however, that he isn’t an expert on setting up linear rails, so perhaps there’s something he could have done better. He did note that the rails were quieter but that, for both cases, the noise generated by the moving rails was only a small fraction of the total noise generated by the printer. The rails were also more stable in terms of resonance. Input shaping can help overcome that, though, so it probably isn’t that important in a modern printer.

What do you think? Are linear rail upgrades worth it? Let us know in the comments. We’ve been 3D printing long enough that we are hard-pressed to complain much about any of the prints we produce today on printers that cost a fraction of what we spent on our first ones.

Of course, you could go with string. Putting rails together with or without slots is its own art form.

Continue reading “V-Slot Wheels Or Linear Rails?”

A 3D-printed talking milk jug with a speech bubble that says 'glug'.

Talking Milk Jug Says Glug-Glug-Glug

Children can be a great source of daily inspiration, especially when they are just beginning to speak in full sentences and starting to let their little personalities show.

The innards of the milk jug. A sound module with SD card, a tilt switch, a boost converter, and so on. [Franklinstein] has the cutest toddler, and she loves her toy espresso machine, especially the little milk carton that came with it. Well, one day, Daddy made a glug-glug sound that delighted her, and he was inspired to build an entirely new milk jug that would make that special sound whenever it was turned over.

In order to keep the build relatively simple, [Franklinstein] used a sound module with an SD card and a tilt switch to activate it. There’s not much else to the build, really — just the usual suspects like a boost converter, a charging module, and a speaker, of course. In case you couldn’t tell, the enclosure and the internal skid that the electronics assemble onto are 3D printed.

This is really cute, and [Franklinstein]’s daughter seems to love it. Everything is available, including some nice instructions if you want to make one of your own. Be sure to check out the neat build video after the break.

The things we do for kids. Seriously.

Continue reading “Talking Milk Jug Says Glug-Glug-Glug”

Simulating Air Flow For 3D Printing

You’ve probably heard that a 3D printer is capable of producing its own replacement parts. Sometimes, that even includes upgraded or improved versions of the parts it was originally built with. But sometimes, it’s hard to figure out what improved really means. Think about air ducts that cool the part after printing. In theory, it should be easy to design a new duct. But how does it perform? Empirical testing can be difficult, but [Mike] shows how you can simulate the airflow so you can test design changes and validate assumptions before you print the actual part.

Of course, this wouldn’t only apply to printer ducts. You might also get some tips if you want to model airflow for PC cooling, hot air soldering, or other air-related projects. The free version of the software has some limitations, but it was surprisingly capable.

We also enjoyed how [Mike] used fluid to visualize the actual patterns and compared it to the simulation. The trick is using a compound from a kid’s science project kit, and it seems to work very well. Of course, you could just grab your smartphone. This might be worth thinking about if you are building a laser cutter air assist, too.

Continue reading “Simulating Air Flow For 3D Printing”

Charles Duke during his interview with Jack Gordon. (Credit: Jack Gordon, YouTube)

Lunar Landing Lunacy: Charles Duke Confronted With Reality-Deniers

Lunar Module pilot Charles Duke saluting the US flag during Apollo 16. (Credit: NASA)
Lunar Module pilot Charles Duke saluting the US flag during Apollo 16. (Credit: NASA)

Imagine: you spent years training for a sojourn to the Moon, flew there on top of a Saturn V rocket as part of Apollo 16, to ultimately land on the lunar surface. You then spend the next few days on the surface, walking and skipping across the lunar regolith while setting up experiments and exploring per your mission assignments. Then, you pack everything up and blast off from the lunar surface to the orbiting command module before returning to Earth and a hero’s welcome. Then, decades later, you are told to your face that none of that ever happened. That’s the topic of a recent interview which [Jack Gordon] recently did with astronaut [Charles Duke].

None of these ‘arguments’ provided by the reality-denying crowd should be too shocking or feel new, as they range from the amount of fuel required to travel to the moon (solved by orbital mechanics) to the impossibility of lighting on the Moon (covered by everyone and their dog, including the Mythbusters in 2008).

Of course, these days, we have lunar orbiters (LRO and others) equipped with powerful cameras zoomed in on the lunar surface, which have photographed the Apollo landing sites with the experiments and footsteps still clearly visible. Like today’s crowd of spherical Earth deniers, skeptics will denounce anything that doesn’t fit their ill-conceived narrative as ‘faked’ for reasons that only exist in their fevered imaginations.

A common objection we’ve heard is that if we went to the moon back then, why haven’t we been back? The reason is obvious: politics. The STS (Shuttle) project sucked up all funding and the USSR collapsed. Only recently has there been a new kind of ‘space race’ in progress with nations like China. That doesn’t keep countless individuals from dreaming up lunar landing conspiracy theories to file away with their other truth nuggets, such as how microwaved and genetically engineered foods cause cancer, vaccines are another government conspiracy to control the population, and nuclear power plants can explode like nuclear bombs.

Perhaps the best takeaway is that even if we have not found intelligent life outside Earth yet, for at least a few years, intelligent life was the only kind on Earth’s Moon. We wish [Charles Duke] many happy returns, with maybe a casual return to the Moon in the near future as well, to frolic once more on the lunar surface.

Not that there hasn’t been a moon hoax, just not lately. If you want to watch the old Apollo video, it has been improved in recent years.

Continue reading “Lunar Landing Lunacy: Charles Duke Confronted With Reality-Deniers”

Using A 2D Scanner To Make 3D Things

[Chuck Hellebuyck] wanted to clone some model car raceway track and realised that by scanning the profile section of the track with a flatbed scanner and post-processing in Tinkercad, a useable cross-section model could be created. This was then extruded into 3D to make a pretty accurate-looking clone of the original part. Of course, using a flatbed paper scanner to create things other than images is nothing new, if you can remember to do it. A common example around here is scanning PCBs to capture mechanical details.

The goal was to construct a complex raceway for the grandkids, so he needed numerous pieces, some of which were curved and joined at different angles to allow the cars to race downhill. After printing a small test section using Ninjaflex, he found a way to join rigid track sections in curved areas. It was nice to see that modern 3D printers can handle printing tall, thin sections of this track vertically without making too much of a mess. This fun project demonstrates that you can easily combine 3D-printed custom parts with off-the-shelf items to achieve the desired result with minimal effort.

Flatbed scanner hacks are so plentiful it’s hard to choose a few! Here’s using a scanner to recreate a really sad-looking PCB, hacking a scanner to scan things way too big for it, and finally just using a scanner as a linear motion stage to create a UV exposure unit for DIY PCBs.

Continue reading “Using A 2D Scanner To Make 3D Things”

Comparing AliExpress Vs LCSC-Sourced MOSFETs

The fake AliExpress-sourced IRFP460 MOSFETs (Credit: Learn Electronics Repair, YouTube)

These days, it’s super-easy to jump onto the World Wide Web to find purported replacement parts using nothing but the part identifier, whether it’s from a reputable source like Digikey or Mouser or from more general digital fleamarkets like eBay and AliExpress. It’s hardly a secret that many of the parts you can buy online via fleamarkets are not genuine. That is, the printed details on the package do not match the actual die inside. After AliExpress-sourced MOSFETs blew in a power supply repair by [Learn Electronics Repair], he first tried to give the MOSFETs the benefit of the doubt. Using an incandescent lightbulb as a current limiter, he analyzed the entire PSU circuit before putting the blame on the MOSFETs (IRFP460) and ordering new ones from LCSC.

Buying from a distributor instead of a marketplace means you can be sure the parts are from the manufacturer. This means that when a part says it is a MOSFET with specific parameters, it almost certainly is. A quick component tester session showed the gate threshold of the LCSC-sourced MOSFETs to be around 3.36V, while that of the AliExpress ‘IRFP460’ parts was a hair above 1.8V, giving a solid clue that whatever is inside the AliExpress-sourced MOSFETs is not what the package says it should be.

Unsurprisingly, after fitting the PSU with the two LCSC-sourced MOSFETs, there was no more magic smoke, and the PSU now works. The lesson here is to be careful buying parts of unknown provenance unless you like magic smoke and chasing weird bugs.

Continue reading “Comparing AliExpress Vs LCSC-Sourced MOSFETs”