Circuit Printers: Voltera And Voxel8

There are two printers being shown off at the 2015 Consumer Electronics shows which really spark our interest. They are the Voltera and the Voxel8. Each is taking on the challenge of printing circuits. They use similar techniques but approach the problem in very different ways.

Voxel8

The Voxel8 marries the idea of a 3D printer with a silver conductive ink dispenser. You start by modeling your entire design, hardware and electronics, all in one. The printer will then begin the 3D print, pausing when necessary for you to add electronics and mechanicals. With the parts — and their pins — in place it lays out the conductive ink to connect the components and then continues with the 3D printing to finish the object.

Voltera

The Voltera is a PCB printer that uses silver conductive ink. It prints the ink onto a substrate. Pads made of the ink are used to solder the components in place after the printing is finished. The trick added to this design is the ability to print two layers, both on the same side of the board. There is a second ink material which is an insulator. It is laid over the first conductive layer before the second is printed, allowing traces to cross over each other.

Congratulations to the Voltera team who won $50k from the 2015 Hardware Battlefield at CES.

Our Thoughts

We didn’t see enough to shake our skepticism about the viability of silver conductive ink to take the place of copper on prototype boards. But if anyone is going to make the case that it is plausible these two offerings will.

One interesting thing about the Voxel8 is the ability to specify point-to-point wiring as a “part”. If you do so, the machine will pause while you solder the wires in place before it encapsulates them with the rest of the print. Of course if you’re going to do this manually it shouldn’t really matter which printer you use for it.

What do think about the future of conductive ink for prototyping? Lets us know in the comments.

3D Printing Circuits Gets Rid Of The Box Altogether

Many think that the next big step in 3D printing is when we’ll be able to print in metal, well, at an affordable rate. But what about printing in metal and plastic at the same time?

The thing is, most electronics are typically two-dimensional. Layers upon layers of relatively flat PCBs make up the brains of every bit of technology we know and love. The funny thing is, we live in a three-dimensional world, and we like to shove these flat circuits into three-dimensional boxes. Well, what if we didn’t have to? What if the circuit could be embedded directly into whatever shape we want? It’d be pretty awesome — minus the whole servicing aspect of the product…

Anyway we’ve seen some great hacks over the years attempting this, like adding a copper wire strand into your 3D print, embedding components into your print by pausing the job, or even going old school and using the point-to-point Manhattan style circuit construction to add some electronic features to your part. But what if your printer could do it for you?

That’s exactly what Optomec is attempting with the Voxel8 3D printing electronics platform. It is your standard run of the mill FDM style 3D printer, but it has a 2nd extruder that is capable of squeezing out liquid silver ink that dries at room temperature. Just take a look at this quadrotor they were able to make.

Continue reading “3D Printing Circuits Gets Rid Of The Box Altogether”

3D Printing RC Airplanes That Fly: An Engineer’s Chronicle

In the past, creating accurate replicas of models and fantasy objects was a task left to the most talented of cosplayers. These props need not be functional, though. [Steve Johnstone] takes replica model-building to the next step. He’s designing and building a model airplane that flies, and he’s documenting every step of the way.

Armed with a variety of 3D printing techniques and years of model-building experience, [Steve] is taking the lid off a number of previously undocumented techniques, many of which are especially relevant to the model-builder equipped with a 3D printer in the workshop.

As he continues his video log, [Steve] takes you through each detail, evaluating the quality of both his tools and techniques. How does a Makerbot, a Formlabs, and a Shapeways print stand up against being used in the target application? [Steve] evaluates a number of his turbine prints with a rigorous variable-controlled test setup.

How can we predict the plane’s center-of-gravity before committing to a physical design? [Steve] discusses related design decisions with an in-depth exploration of his CAD design, modeled down to the battery-pack wires. Though he’s not entirely finished, [Steve’s] work serves as a great chance to “dive into the mind of the engineer,” a rare opportunity when we usually discover a project after it’s been sealed from the outside.

3D printing functional parts with hobbyist-grade printers is still a rare sight, though we’ve seen a few pleasant and surprisingly practical components. With some tips from [Steve], we may complete this video journey with a few techniques that bump us out of the “novelty” realm and into a space where we too can start reliably printing functional parts. We’re looking forward to seeing the maiden voyage.

Continue reading “3D Printing RC Airplanes That Fly: An Engineer’s Chronicle”

3D Printed Lawnmower

Wait, A 3D Printed Lawn Mower?

Well, we have to admit, we never saw this coming… A 3D printed lawn mower? What? Why? Huh? How? Those were at least a few of the thoughts running through our head when we saw this come in on the tips line.

[Hans Fouche] has a giant 3D printer that takes up most of the space in his garage, and after printing several large vases, a briefcase, bowls, and even a wind turbine blade — he decided to try printing a lawnmower. A freaking lawnmower.

To do so, he reverse engineered his old rusty lawn mower, and redesigned it to be printable. Apart from the steel axles, some fastening hardware, and of course the motor and blade, the entire thing is 3D printed. And it looks like it works pretty good too.

Continue reading “Wait, A 3D Printed Lawn Mower?”

LED Desk Lamp

One Way To Get Rid Of That Fluorescent Buzzing Sound

Tired of the persistent hum his fluorescent desk lamp made, [Andres Lorvi] decided he had to fix it. And by fix, we mean get rid of altogether. He liked the lamp though so he decided to convert it to LED — that way he’d save some money on electricity too!

Besides wanting to get rid of the hum, [Andres] had also been reading up on the effect of light temperature at night — bluish light is typically bad for your eyes when you’re trying to go to sleep. So he also took this opportunity to change the color temperature of the light in his room. Unfortunately it wasn’t as simple as just replacing the fluorescent with the LEDs — no, that would be far too easy…

Continue reading “One Way To Get Rid Of That Fluorescent Buzzing Sound”

Automatic 3D Scanning On The Cheap

After hearing about a few 3D object scanners, [Will] thought one of these tools could find a place in his workshop. The price of these scanners made him reconsider simply buying one, so he just made one out of parts that were sitting around. This was the first version of his 3D scanner. It worked, but there were a few shortcomings. [Will] had to rotate the object manually. That’s a cheap way of doing it, but the method is tedious.

Now [Will] is back for round two. He’s made some improvements, and this time a few bits of electronics automate the process, allowing [Will] to hit a button, walk away, and come back to a scanned object.

Even though [Will] has improved his setup immensely, the theory of how to scan an object remains the same. He’s projecting a straight vertical line on an object, taking a few snapshots with a webcam, and reconstructing the object with computer vision algorithms and Meshlab. The new additions include a BeagleBone Black, a stepper motor and an EasyDriver from Sparkfun, and a turntable.

[Will] wrote two scripts for this project. The first does the mechanical heavy lifting – turning the stepper motor and taking a picture, while the second converts the output from the webcam to a point cloud. From there, the point cloud is sent over to Meshlab, and an object appears on [Will]’s hard drive.

There’s about $80 in hardware invested in this setup, and considering the inspiration for this project was the $800 Makerbot Digitizer, we’re going to call [Will]’s experiments in 3D scanning a success.

3D Printable LED Diffusors

While you can get an LED matrix in any size or shape, the really cool looking ones that are perfect for low-res displays all have diffusors. When they come from a nameless Chinese factory, these diffusors are thin sheets of plastic set into an extruded plastic frame. Since [Jana] has a 3D printer, she figured a custom diffusor was just a few bits of filament and a SCAD file away.

The basis for this custom LED diffusor was a LoL Shield given to [Jana] by the creator at the recent 31C3 conference. This shield is really only just 126 LEDs, multiplexed and in an Arduino form factor, and that many LEDs were just too bright and indistinct next to each other. The plan for a 3D printed diffusor was hatched.

After taking a few measurements, a pair of OpenSCAD files were whipped up and printed out. Assembly consisted of pressing 126 tiny little white diffusors into a frame, but once everything was attached to the matrix, the results were worth it.

Check out the video below for the before and after, demonstrating what a few bits of plastic can do to a LED matrix.

Continue reading “3D Printable LED Diffusors”