Expanding On The Creation Of Collapsible Containers

You might remember that industrial designer [Eric Strebel] tried to make a collapsible silicone container with 3D printed molds a few weeks ago, and was finally successful after dozens of attempts. Someone commented that commercial containers are molded in the collapsed position instead of the expanded position, so naturally, [Eric] had to try it once he saw the photographic proof of these molds.

Adding sand to a partially-cured silicone piece so it will take the shape of the expanded mold.This time around, [Eric] made things easier on himself by adding some handles to the mold and using both wax and spray mold release before pouring in the degassed silicone. The first one was a failure —  he had let it cure the whole time in the collapsed mold, and it just didn’t want to stay expanded. On the second attempt, [Eric] decided to pull the piece while it was curing, about 5 1/2 hours into the process.

After carefully de-molding the piece, he pressed it into the grooves of one of the older molds from the days of molding containers in the expanded state. Then he filled it with sand and let it cure the rest of the way. That worked out quite well, but even so, [Eric] made a third attempt that he pulled after 3.5 hours or so when the silicone was still sticky.  He did the sand trick again, but this time, he ran a piece of string up the wall and over the edge so that the air that gets trapped under the sand can escape. The final result looks great, albeit a little bit floppy, but [Eric] fits the final product into a frame that makes them much sturdier. Check out the process in the video after the break.

Did you miss the first installment? It’s worth a look into the science of creating collapsible walls.

Continue reading “Expanding On The Creation Of Collapsible Containers”

Erasable Pen Ink Adds Colors To 3D Prints

Changing colors during a 3D print is notoriously difficult. Either you need multiple heads ready to go during the print which increases operating and maintenance costs for your printer, or you need to stop the print to switch the filament and then hope that everything matches up when the print is resumed. There are some workarounds to this problem, but not many of them are as smooth an effortless as this one which uses erasable pen ink to add colors to the filament on the fly.

Erasable pen ink is a thermochromic material that doesn’t get removed from paper when erased like graphite from a pencil. Instead the heat from the friction of erasing causes it to become transparent. By using this property for a 3D print, the colors in the print can be manipulated simply by changing the temperature of the hot end. Of course the team at [Autodrop3d] had quite a learning curve when experimenting with this method, as they had to run the extruder at a much lower temperature than normal to have control over the ink’s color, had to run the print much slower than normal, and were using a very sticky low-temperature plastic for the print.

With all of these modifications to the print setup, there are bound to be some limitations in material and speed, but the results of the project speak for themselves. This allows for stock 3D printers to use this method with no hardware modifications, and the color changes can be done entirely in software. While everyone catches up with this new technology, there are some other benefits to a 3D printer with multiple print heads, though, and some clever ways of doing the switching without too much interruption.

Continue reading “Erasable Pen Ink Adds Colors To 3D Prints”

E3D On Patents And Not Being Evil About Them

In our community it’s certain that there will be many people with very strong views about patents. It’s fair to say that the patents system is at times not fit for purpose, with such phenomena as patent trolls, submarine patents, and patent war chests doing nothing but leading it into disrepute. So it’s interesting to read the words of 3D printer hotend manufacturer E3D, as they talk about why they feel the need to patent some of their inventions, and how they intend to proceed with them.

The result is a no-nonsense explanation of why their work being reproduced by overseas competitors has brought them to this point, and in short: they’re patenting very specific inventions rather than broad catch-alls, they are making what they call a legally binding promise not to enforce the patents against non-commercial or academic experimenters, and they will continue to open-source as much as they can.

Will it work for them, or is it the start of a slippery slope? We can see why the E3D folks have taken this step, and we hope that they will continue to act in a responsible manner. If not, as those who have followed the maker-oriented 3D printing business for a long time will know: treading the line between open-source and closed-source can be fraught with danger.

DuoLux Is A Stylish Lamp And You Should Definitely Print Your Own

Lamps are interesting pieces of homeware. They can be purely functional, but often they become expressions of the true vibrancy of industrial design. The “DuoLux” from [seabirdhh] may not yet have graced the cover of prestigious European design journals, but this folding lamp does have some great style for a 3D-printed design.

The lenses themselves are cut from scrap polycarbonate twin-wall sheet with a linear pattern which does much to add some art-deco flair. They’re placed inside a pair of 3D-printed tubes mounted on a zig-zag arm, with the tubes themselves carrying G4 lamp sockets for use with compact plug-in LED modules. 3D-printed knurled knobs allow the easy adjustment and aiming of the lamp as required. Power is from a 12 V DC adapter as you might expect, and everything is mounted upon a simple round base.

It’s a tidy build, and one that could be improved further by adding a weighted base for more flexibility in aiming the lights. It’s something we’d love to have on our own desk given the clean geometric style and presumably great light output from the LEDs. Alternatively, consider modelling your lamp on Earth’s very own moon itself!

How Good Are The Head(amame) 3D Printed Headphones?

3D printing lets the average maker tackle building anything their heart desires, really, and many have taken to using the technology for audio projects. Printable speaker and headphone designs abound. The Head(amame) headphones from [Vector Finesse] are a design that combines 3D printed parts with hi-fi grade components to create a high-end listening experience. [Angus] of Maker’s Muse decided to try printing a set at home and has shared his thoughts on the hardware.

Printing the parts has to be done carefully, with things like the infill settings crucial to the eventual sound quality of the final product. Using a properly equipped slicer like CURA is key to getting the parts printed properly so the finer settings can be appropriately controlled. The recommendation is to print the pieces in PETG, which [Angus] notes can be difficult to work with, and several prints were required to get all the parts made correctly.

Assembly is straightforward enough with kits available with all the fasteners and electronic parts included. Subjectively, [Angus] found the sound quality to be impressive, with plenty of full bass and clearly defined highs. Overall, it’s a positive review in the areas of comfort and sound quality.

Detractors will note that the kit of parts costs over $100 USD alone, and that after hours of work and printing, the user is left with a set of headphones made out of obviously 3D-printed parts. It seems destined to be a product aimed at the 3D printing fanbase. If you want a set of headphones you can customise endlessly in form and color, these are ideal. If you prefer the fit and finish of a consumer-grade product, they may not be for you.

It’s a good look at a design sure to appeal to a wide set of makers out there. We’ve seen 3D printing put to good use in this realm before, too. Video after the break.

Continue reading “How Good Are The Head(amame) 3D Printed Headphones?”

Columbia Decides 3D Printed Food Tastes Like Chicken

Researchers at Columbia have used multi-wavelength lasers to cook 3D-printed chicken. Apparently, it tastes like chicken. We were not overly surprised that 3D printed chicken protein cooked up to taste like chicken, but, then again, you have to do the science.

While additive manufacturing is the latest buzzword for all kinds of manufacturing, there’s also been a variety of attempts to 3D print food. We’ve seen pizza printers and fake steak printers, too. It makes sense that you don’t want to print raw food — the finished product needs to be cooked. You can see several videos about the process, below.

Continue reading “Columbia Decides 3D Printed Food Tastes Like Chicken”

3D Printed Sensor Detects Glyphosate

Typically, detecting glyphosate — a herbicide — in a beverage requires a sophisticated test setup. But Washington State University has a 3D printed sensor that uses nanotubes to simplify the detection of the toxin.

The idea is very similar to inexpensive blood glucose monitors. The test will eventually find use for human samples, but the initial testing was for detecting contamination in orange juice.

Continue reading “3D Printed Sensor Detects Glyphosate”