Henry Smolinski And The Flying Pinto

Anyone who has ever been stuck in gridlock has probably daydreamed about pushing a button on the dashboard that turns their car into a plane. Imagine how much more relaxing a weekend getaway would be if you could take to the open sky instead hitting the congested highway. For as long as there have been aircraft and automobiles, man has tried to combine the two. The proper term for this marriage is ‘roadable aircraft’, and a successful one requires attention to the aerodynamics of flight as well as the rigors of motoring.

One promising attempt at a roadable aircraft came from Henry Smolinski, an aeronautical engineer in Van Nuys, California. He along with his friend Harold Blake started a company in 1971 called Advanced Vehicle Engineers (AVE) to produce the AVE Mizar. This flying car combined the lightweight Ford Pinto with the wings and partial fuselage of a Cessna Skymaster.

Continue reading “Henry Smolinski And The Flying Pinto”

Volvo Trucks: Kid Tested, Mother Approved

If that looks like a four year old with a remote control driving a full-size dump truck — that’s because it is. As part of their Live Test Series, Volvo made a ridiculous obstacle course, and then let a four year old take the wheel of one of their heavy duty dump trucks. Viral advertising maybe — but too awesome not to share.

And don’t worry, there is a hack involved! The remote control setup in the truck isn’t that polished, and can’t possibly be a commercial “RC kit”. Which means some lucky hacker got to build a remote control system for a freaking dump truck. Consider us jealous.

Surprisingly (or maybe not), the truck seems to withstand everything the four year old throws at it. Including rolling it sideways down a hill, and of course smashing through an entire building. It’s well worth the watch and had us grinning from ear to ear.

Continue reading “Volvo Trucks: Kid Tested, Mother Approved”

Repairing A Twisted Prius Display Computer

This one is from way back in 2007, but the steps [hobbit] took to evaluate and repair a failed Prius Multi-Function Display (MFD) is a refresher course in how to go about fixing stuff that’s broken.

The 2004 / 2005 models of the Prius had peculiar problems with their MFD. Buttons and touch functions became sluggish and unresponsive, it wouldn’t display ECU data such as current and average fuel consumption, and couldn’t control stereo and air-conditioning. Lots of Prius users were reporting similar problems on the Priuschat forum.

The issues would usually arise long after warranty expired, and replacement units cost a couple of thousand dollars new. Toyota knew what the problem was (PDF link), but their fix involved swapping the defective units out.

[hobbit] managed to get a defective MFD unit from a friend, and because his own Prius still had a working MFD, he was able to carry out comparative tests on both units. The broken unit was generally laggy, and the buttons didn’t beep when pressed. Apparently, the AVCLan, a small data network between various components in the car, wasn’t reaching the MFD reliably. The MFD would send the “beep” command to the audio amplifier and wait for a confirmation that would never arrive. The system hung here until the MFD timed out.

In the end, the cause of the problem was the 60-pin micro connector that interfaces the two main boards of the MFD. Once the two are mated, tightening the mounting screws twisted the two boards ever so slightly, leading to flaky contacts.

The fix? [hobbit] tweaked all of the 60 pins outwards enough that they still made contact even when the connector housing got twisted. Comparing the defective MFD to the one in [hobbit]’s own car also demonstrated how the factory fixed the problem.

Thanks to [Nick] for sending in this tip, which he stumbled upon “while searching for ideas for a very small solder tip to repair something on my laptop.”

Tricking An Ancient Protocol To Play Tunes

A lot of technological milestones were reached in 2007. The first iPhone, for example, was released that January, and New Horizons passed Jupiter later on that year. But even with all of these amazing achievements, Volvo still wasn’t putting auxiliary inputs on the stereo systems in their cars. They did have antiquated ports in their head units though, and [Kalle] went about engineering this connector to accommodate an auxiliary input.

The connector in question is an 8-pin DIN in the back, which in the days of yore (almost eight years ago) would have been used for a CD changer. Since CDs are old news now, [Kalle] made use of this feature for the hack. The first hurdle was that the CD changer isn’t selectable from the menu unless the head unit confirms that there’s something there. [Kalle] used an Arduino Nano to fool the head unit by simulating the protocol that the CD changer would have used. From there, the left and right audio pins on the same connector were used to connect the auxiliary cable.

If you have a nearly-antique Volvo like [Kalle] that doesn’t have an aux input and you want to try something like this, the source code for the Arduino is available on the project page. Of course, if you don’t have a Volvo, there are many other ways to go about hacking an auxiliary input into various other devices, like an 80s boombox or the ribbon cable on a regular CD player. Things don’t always go smoothly, though, so there are a few nonstandard options as well.

Spark Plug Lights The Darkness

When you have an idea, just go build it. That’s the approach that [GordsGarage] takes with most of his projects, and he’s back in the machine shop again. This time it’s with a rather unique oil candle that uses a spark plug as inspiration. We have to say, the results are on fire.

thumbThe spark plug candle was fashioned out of a single piece of 6061 aluminum. To create the scale model, first the stock metal hit the lathe to create the “insulator” section of the plug. From there, he milled in the hex bolt section, then it hit the lathe again to create the threaded section. The inside was bored out to create space for the wick and oil, and then the electrode was installed just above the flame.

This is a pretty impressive scale model and has a great finished look. The only thing that isn’t to scale is the gap for the electrode which is completely necessary to keep the candle from getting smothered. It’s an interesting, unique idea too, which is something that [GordsGarage] excels at. And, if you want to scale his model up a little bit, perhaps you can find some inspiration from this other candle.

Lithium-Air Might Be The Better Battery

Researchers at Cambridge University demonstrated their latest version of what is being called the Lithium-Air battery. It can be more accurately referred to as a Lithium-Oxygen but Air sounds cooler.

The early estimates look pretty impressive with the energy density being 93% efficient which could be up to 10 times the energy density of Lithium-Ion and claims to be rechargeable up to 2,000 times.  Recent improvements toward Lithium-Air batteries include a graphene contact and using lithium hydroxide in place of lithium peroxide which increased both stability and efficiency.

Here’s the rub: Lithium-Air batteries are still years away from being ready for commercial use. There are still problems with the battery’s ability to charge and discharge (kind of a deal breaker if the battery won’t charge or discharge right?) There are still issues with safety, performance, efficiency, and the all too apparent need for pure oxygen.

Do batteries get you all charged up? Check out our coverage of MIT’s solid state battery research, or have a look at the Nissan Leaf and/or Tesla battery packs.

Thanks to [Jimmy] for the tip.

Palm Interface Has You Suggest Where Self Driving Car Should Go

These days, our automobiles sport glittering consoles adorned with dials and digits to keep us up-to-date with our car’s vitals. In the future, though, perhaps we just wont need such vast amounts of information at our fingertips if our cars are driving themselves around. No information? How will we tell the car what to do? On that end, [Felix] has us covered with Stewart, a tactile gesture-input interface for the modern, self driving car.

Stewart is a 6-DOF “Stewart Interface” capable of both gesture input and haptic-output. Gesture input enables the car’s passenger to deliver driving suggestions to the car. The gentle twist of a wrist can signal an upcoming turn at the next intersection; pulling back on Stewart’s head “joystick style” signals a “whoa–slow down, there, bub!” Haptic output via 6 servos pushes around Stewart’s head in the car’s intended direction.  If the passenger agrees with the car, she can let Stewart gesture itself in the desired direction; if she disagrees; she can veto the car’s choices by moving her hand directly against Stewart’s current output gesture. Overall, the interface unites the intentions of the car and the intentions of the passenger with a haptic device that makes the connection feel seamless!

We know we’re not supposed to comment on the “how” with art projects–but we’re engineers–and this one makes us giddy with delight. We’re imagining those rc car shock absorbers dramatically dampening the jittery servos and giving the user a nice resistive feel. Interconnects are laser cut acrylic, and the shell is a smoothly contoured 3d print. We’ve seen Stewart Interfaces before, but nothing with the look-and-feel of a sleek design feature on its way to being dropped into the cockpit of our future self-driving cars.

Continue reading “Palm Interface Has You Suggest Where Self Driving Car Should Go”