European Roads See First Zero-Occupancy Autonomous Journey

We write a lot about self-driving vehicles here at Hackaday, but it’s fair to say that most of the limelight has fallen upon large and well-known technology companies on the west coast of the USA. It’s worth drawing attention to other parts of the world where just as much research has gone into autonomous transport, and on that note there’s an interesting milestone from Europe. The British company Oxbotica has successfully made the first zero-occupancy on-road journey in Europe, on a public road in Oxford, UK.

The glossy promo video below the break shows the feat as the vehicle with number plates signifying its on-road legality drives round the relatively quiet roads through one of the city’s technology parks, and promises a bright future of local deliveries and urban transport. The vehicle itself is interesting, it’s a platform supplied by the Aussie outfit AppliedEV, an electric spaceframe vehicle that’s designed to provide a versatile platform for autonomous transport. As such, unlike so many of the aforementioned high-profile vehicles, it has no passenger cabin and no on-board driver to take the wheel in a calamity; instead it’s driven by Oxbotica’s technology and has their sensor pylon attached to its centre.

Continue reading “European Roads See First Zero-Occupancy Autonomous Journey”

The Current State Of Play In Autonomous Cars

Bluster around the advent of self-driving cars has become a constant in the automotive world in recent years. Much is promised by all comers, but real-world results – and customer-ready technologies – remain scarce on the street.

Today, we’ll dive in and take a look at the current state of play. What makes a self-driving car, how close are the main players, and what can we expect to come around the corner?

Continue reading “The Current State Of Play In Autonomous Cars”

Tesla Automatic Driving Under Scrutiny By US Regulators

The US National Highway Traffic Safety Administration (NHTSA) has opened a formal investigation about Tesla’s automatic driving features (PDF), claiming to have identified 11 accidents that are of concern. In particular, they are looking at the feature Tesla calls “Autopilot” or traffic-aware cruise control” while approaching stopped responder vehicles like fire trucks or ambulances. According to the statement from NHTSA, most of the cases were at night and also involved warning devices such as cones, flashing lights, or a sign with an arrow that, you would presume, would have made a human driver cautious.

Qote from Tesla support page: "The currently enabled Autopilot and Full Self-Driving features require active driver supervision and do not make the vehicle autonomous."There are no details about the severity of those accidents. In the events being studied, the NHTSA reports that vehicles using the traffic-aware cruise control “encountered first responder scenes and subsequently struck one or more vehicles involved with those scenes.”

Despite how they have marketed the features, Tesla will tell you that none of their vehicles are truly self-driving and that the driver must maintain control. That’s assuming a lot, even if you ignore the fact that some Tesla owners have gone to great lengths to bypass the need to have a driver in control. Tesla has promised full automation for driving and is testing that feature, but as of the time of writing the company still indicates active driver supervision is necessary when using existing “Full Self-Driving” features.

We’ve talked a lot about self-driving car safety in the past. We’ve also covered some of the more public accidents we’ve heard about. What do you think? Are self-driving cars as close to reality as they’d like you to believe? Let us know what you think in the comments.

The Many Levels Of Autonomous Motoring

For years now we have been told that self-driving cars will be the Next Big Thing, and we’ve seen some companies — yes, Tesla but others too — touting current and planned features with names like “Autopilot” and “self-driving”. Cutting through the marketing hype to unpacking what that really means is difficult. But there is a standard for describing these capabilities, assigning them as levels from zero to five.

Now we’re greeted with the news that Honda have put a small number of vehicles in the showrooms in Japan that are claimed to be the first commercially available level 3 autonomous cars. That claim is debatable as for example Audi briefly had level 3 capabilities on one of their luxury sedans despite having few places to sell it in which it could be legally used. But the Honda Legend SENSING Elite can justifiably claim to be the only car on the market to the general public with the feature at the moment. It has a battery of sensors to keep track of its driver, its position, and the road conditions surrounding it. The car boasts a “Traffic Jam Pilot” mode, which “enables the automated driving system to drive the vehicle under certain conditions, instead of the driver, such as when the vehicle is in congested traffic on an expressway“.

Sounds impressive, but just what is a level 3 autonomous car, and what are all the other levels?

Continue reading “The Many Levels Of Autonomous Motoring”

Forgotten Tech — Self Driving Cars

The notion of self driving cars isn’t new. You might be surprised at the number of such projects dating back to the 1920s. Many of these systems relied on external aids built into the roadways. It’s only recently that self driving cars on existing roadways are becoming closer to reality than fiction — increased computer processing power, smaller and power-efficient computers, compact Lidar and millimeter-wave Radar sensors are but a few enabling technologies. In South Korea, [Prof Min-hong Han] and his team of students took advantage of these technological advances and built an autonomous car which successfully navigated the streets of Seoul in several field trials. A second version subsequently drove itself along the 300 km journey from Seoul to the southern port city Busan. You might think this is boring news, until you realize this was accomplished back in the early 1990s using an Intel 386-powered desktop computer.

The project created a lot of buzz at the time, and was shown at the Daejeon Expo ’93 international exposition. Alas, the government eventually decided to cancel the research program, as it didn’t fit into their focus on heavy industries like ship building and steel production. Given the tremendous focus on self-driving and autonomous vehicles today, and with the benefit of hindsight, we wonder if that was the best choice. This isn’t the only decision from Seoul that seems questionable when viewed from the present — Samsung executives famously declined to buy Andy Rubin’s new operating system for digital cameras and handsets back in late 2004, and a few weeks later Android was purchased by Google.

You should check out [Prof Han]’s YouTube channel showing videos of the car’s camera while operating in various conditions and overlaid with the lane recognition markers and other information. I’ve driven the streets of Seoul, and that alone can be a frightening experience. But [Han] manages to stretch out in the back seat, so confident in his system that he doesn’t even wear a seatbelt.

Continue reading “Forgotten Tech — Self Driving Cars”

Sony’s Electric Car Now Road Testing In Austria

The Consumer Electronics Show was not typically a place for concept cars, and Sony aren’t known as a major automaker. However, times change, and the electric transport revolution has changed much. At the famous trade show, Sony shocked many by revealing its Vision-S concept — a running, driving, prototype electric car.

Far from a simple mockup to show off in-car entertainment or new fancy cameras, Sony’s entry into the automotive world is surprisingly complete. Recently, the Japanese tech giant has been spotted testing the vehicle on the road in Austria, raising questions about the future of the project. Let’s dive in to what Sony has shown off, and what it means for the potential of the Vision-S.

Continue reading “Sony’s Electric Car Now Road Testing In Austria”

Uber Traded Away Its In-House Self-Driving Effort

Perhaps the best-known ridesharing service, Uber has grown rapidly over the last decade. Since its founding in 2009, it has expanded into markets around the globe, and entered the world of food delivery and even helicopter transport.

One of the main headline research areas for the company was the development of autonomous cars, which would revolutionize the company’s business model by eliminating the need to pay human drivers. However, as of December, the company has announced that it it spinning off its driverless car division in a deal reportedly worth $4 billion, though that’s all on paper — Uber is trading its autonomous driving division, and a promise to invest a further $400 million, in return for a 26% share in the self-driving tech company Aurora Innovation.

Playing A Long Game

Uber’s self-driving efforts have been undertaken in close partnership with Volvo in recent years.

Uber’s driverless car research was handled by the internal Advanced Technologies Group, made up of 1,200 employees dedicated to working on the new technology. The push to eliminate human drivers from the ride-sharing business model was a major consideration for investors of Uber’s Initial Public Offering on the NYSE in 2019. The company is yet to post a profit, and reducing the amount of fares going to human drivers would make it much easier for the company to achieve that crucial goal.

However, Uber’s efforts have not been without incident. Tragically, in 2018, a development vehicle running in autonomous mode hit and killed a pedestrian in Tempe, Arizona. This marked the first pedestrian fatality caused by an autonomous car, and led to the suspension of on-road testing by the company. The incident revealed shortcomings in the company’s technology and processes, and was a black mark on the company moving forward.

The Advanced Technology Group (ATG) has been purchased by a Mountain View startup by the name of Aurora Innovation, Inc. The company counts several self-driving luminaries amongst its cofounders. Chris Urmson, now CEO, was a technical leader during his time at Google’s self-driving research group. Drew Bagnell worked on autonomous driving at Uber, and Sterling Anderson came to the startup from Tesla’s Autopilot program. The company was founded in 2017, and counts Hyundai and Amazon among its venture capital investors.

Aurora could also have links with Toyota, which also invested in ATG under Uber’s ownership in 2019. Unlike Uber, which solely focused on building viable robotaxis for use in limited geographical locations, the Aurora Driver, the core of the company’s technology, aims to be adaptable to everything from “passenger sedans to class-8 trucks”.

Aurora has been developing self-driving technology to handle real-world situations since its founding in 2017. Being able to master the challenges of a crowded city will be key to succeeding in the marketplace.

Getting rid of ATG certainly spells the end of Uber’s in-house autonomous driving effort, but it doesn’t mean they’re getting out of the game. Holding a stake in Aurora, Uber still stands to profit from early investment, and will retain access to the technology as it develops. At the same time, trading ATG off to an outside firm puts daylight between the rideshare company and any negative press from future testing incidents.

Even if Aurora only retains 75% of ATG’s 1,200 employees, it’s doubling in size, and will be worth keeping an eye on in the future.