Building A Vector Monitor Controller

[fredkono] has a few vintage Atari arcade boards sitting around, and without the rest of the arcade machine – especially the XY CRT – these boards would continue to gather dust. The solution to this terrible shortage of vintage video games was to build a vector monitor from scratch. No, that doesn’t mean building a new CRT, but it does mean rewiring the yoke and building a CRT controller board for tubes salvaged from small, old TVs.

Nearly all the CRTs you’ll find at your local goodwill or surplus shop are raster displays. The CRTs used in the old Atari games were vector displays and extremely similar to the tubes found in old oscilloscopes. [fred] turned the CRT found in an old 9″ color TV into a vector monitor by rewinding the yoke.

With the tube rewired, it was only a matter of connecting the custom deflection circuit boards and getting the old arcade boards running. The images drawn with the new yoke deflector board are great and produce fine, crisp lines of some of the most famous video games in history.

Build Your Own Retrocomputer With Modern Chips

If you’ve ever wanted to get started in retrocomputing, or maybe the Commodore 64 you’ve been using since the 80s just gave up the ghost, [Rick] aka [Mindrobots] has just the thing for you: a retrocomputer based on a PIC microcontroller and a Parallax Propeller.

The two chips at the heart of the computer are both open source. The Propeller is the perfect board to take care of the I/O, video, and audio outputs because it was purpose-built to be a multitasking machine. The microcontroller is either a PIC32MX150 or a PIC32MX170 and is loaded with a BASIC interpreter, 19 I/O pins, a full-screen editor, and a number of communications protocols. In short, everything you would ever want out of a retro-style minicomputer.

The whole computer can be assembled on a PCB with all the outputs you can imagine (VGA, PS/2, etc) and, once complete, can be programmed to run any program imaginable including games. And, of course, it can act as a link to any physical devices with all of its I/O because its heart is a microcontroller.

Retrocomputing is quite an active arena for hackers, with some being made from FPGAs and other barebones computers being made on only three chips. It’s good to see another great computer in the lineup, especially one that uses open chips like the Propeller and the PIC.

Repent! The Church Of Robotron Accepts All!

Are you the mutant savior? Are you prepared for the robot uprising of 2084? Have you accepted robotron into your life? The Church of Robotron is now conducting training, testing, and confession at the new window altar in downtown Portland.

The Church of Robotron is the fake totally legit religion based on the classic arcade game prophecy Robotron 2084. In keeping with the church’s views on community outreach and missionary work, a Robotron altar has been installed at the Diode Gallery for electronic arts.

The altar consists of a system running Robotron 2084 with capacitive sensing controls built by DorkbotPDX’s own [Phillip Odom]. He’s using the same techniques featured in his capacitive sensing workshop, allowing the game to be played 24 hours a day. There are also monitors displaying the leaderboard and tenants of the Church of Robotron.

The Church of Robotron has also been showing up at Toorcamp for a few years now, with an even more spectacular altar that triggers physical events in response to game events. That’s a very cool use of MAME’s debugger, and a story worthy of its own Hackaday post.

Video of the altar below.

Continue reading “Repent! The Church Of Robotron Accepts All!”

ROM dump

Raiders Of The Lost ROM

Once upon a time, arcades were all the rage. You could head down to your local arcade with a pocket full of quarters and try many different games. These days, video arcades are less popular. As a result, many old arcade games are becoming increasingly difficult to find. They are almost like the artifacts of an ancient age. They are slowly left to rot and are often lost or forgotten with time. Enter, MAME.

MAME (Multiple Arcade Machine Emulator) is a software project, the goal of which is to protect gaming history by preventing these arcade machines from being lost or forgotten. The MAME emulator currently supports over 7000 titles, but there are still more out there that require preservation. The hackers who work on preserving these games are like the digital Indiana Jones of the world. They learn about lost games and seek them out for preservation. In some cases, they must circumvent security measures in order to accurately preserve content. Nothing as scary as giant rolling boulders or poison darts, but security nonetheless.

Many of the arcade cabinets produced by a publisher called NMK used a particular sound processor labeled, “NMK004”. This chip contains both a protected internal code ROM and an unprotected external ROM that controls the sound hardware. The actual music data is stored on a separate unprotected EEPROM and is different for each game. The system reads the music data from the EEPROM and then processes it using the secret data inside the NMK004.

The security in place around the internal ROM has prevented hackers from dumping its contents for all this time. The result is that NMK games using this chip have poorly emulated sound when played using MAME, since no one knows exactly how the original chip processed audio. [trap15] found it ridiculous that after 20 years, no one had attempted to circumvent the security and dump the ROM. He took matters into his own hands.

The full story is a bit long and contains several twists and turns, but its well worth the read. The condensed version is that after a lot of trial and error and after writing many custom tools, [trap15] was able to finally dump the ROM. He was able to accomplish this using a very clever trick, speculated by others but never before attempted on this hardware. [trap15] exploited a vulnerability found in the unprotected external ROM in order to trick the system into playing back the protected internal ROM as though it were the sound data stored on the EEPROM. The system would read through the internal ROM as though it were a song and play it out through the speakers. [trap15] recorded the resulting audio back into his PC as a WAV file. He then had to write a custom tool to decode the WAV file back into usable data.

[trap15] has released all of his tools with documentation so other hackers can use them for their own adventures into hardware hacking. The project was a long time in the making and it’s a great example of reverse engineering and perseverance.

[Thanks Ryan]

Welcome To The Old School: Restoring Antique Radios

Before the second world war Radio was a revolution in mass-communication much like the internet today. Fortunes were made and lost, empires built, epic patent battles ensued, all of which resulted in the world being more connected than ever before, which makes for a really great story (and a great Ken Burns documentary).

Last month we showed you how to modify a vintage radio to play your own audio source through it while re-using the existing electronics and maintaining its functionality. In this post we will show you how to restore any vacuum tube radio. You will learn basic repair/restoration procedures from a different era when it was actually worth repairing consumer electronics. Plug into history and get your hands on the most influential technology of the first-half of the 20th century!

Continue reading “Welcome To The Old School: Restoring Antique Radios”

Upgrading The Battery In A Wrist PDA

No, your eyes do not deceive you. That’s a wrist-mounted PDA. Specifically, a Fossil Wrist PDA, also known as an Abacus, that was sold from 2003 to about 2005. Yep, it’s running PalmOS. [mclien] has had this watch/PDA for a while now, and found the original 180mAh battery wasn’t cutting it anymore. He made a little modification to the watch to get a 650mAh battery in this PDA by molding a new back for it.

The original PDA used a round Lithium cell, but being ten years old, the battery technology in this smart watch is showing its years. [mclien] found two batteries (380mAh and 270mAh) that fit almost perfectly inside the battery.

The new batteries were about 3mm too thick for the existing case back, so [mclien] began by taking the old case, adding a few bits of aluminum and resin, and making a positive for a mold. Two or three layers of glass twill cloth were used to form the mold, resined up, and vacuum bagged.

After many, many attempts, [mclien] just about has the case back for this old smartwatch complete. The project build logs are actually a great read, showing exactly what doesn’t work, and are a great example of using hackaday.io as a build log, instead of just project presentation.

Hackaday Retro Edition: 386 Compaqs

[Antoine] recently learned of a little challenge we have in the hinterlands of the Hackaday webosphere – what’s the oldest, or lowest spec hardware you have that can load this our retro edition? He has a pile of old PCs at his work, and with a lot of idle time at work because of summer, he decided to dig into that pile and get a really old computer up on the Internet.

While the pile of PCs didn’t have anything as old as he was expecting, [Antoine] did find an old Compaq from 1992. It has a 386DX running at 25MHz, 4MB of RAM, a 300 MB hard drive, VGA, and an Ethernet NIC. Gathering the requisite CRT monitor, PS/2 keyboard, and an AUI to a more modern Ethernet connector.

When getting these ancient computer on the Internet, the secret sauce is in the software configuration. [Antoine]’s box is running DOS 6.2, but was previously configured to connect to a Microsoft filesystem server on boot. This server was probably somewhere at the bottom of the same pile the Compaq was salvaged from, so rolling his own modern networking stack was the way to go. A driver for the NIC was downloaded on another computer and transferred via floppy, as was mTCP, the key to getting a lot of old PCs on the Internet. The browser is Arachne, and with the right configurations, everything worked perfectly.

[Antoine]’s efforts resulted in a computer that can easily handle the stripped down Hackaday retro edition, and can handle light browsing on Wikipedia. The effective download rate is something like a 33k modem; even with a fast (10M!) Ethernet connection, processing all the packets is taxing for this old machine.