Will HP Create A Carfax System For PCs?

When buying used cars there are plenty of ways to check on their history. In many countries there are systems, like Carfax for parts of North America and Europe, that can provide crash history in some situations and alert a potential buyer of hidden damage. Not so for computers, where anyone can run an intensive mining, gaming, rendering, or AI application for years on hardware which might not otherwise show any outward signs of heavy use. And that’s just for hard use; there’s all kinds of other ways of damaging hardware. HP is hoping to solve this problem with a PC history report of sorts.

Aimed at the enterprise or business arena, where companies tend to follow replacement schedules for laptops and other hardware which might get discarded before reaching a true end-of-life, HP is suggesting adding a data recorder at the firmware level of some computers. This software would monitor the computer’s temperatures, SSD wear, and other telematics on the computer and store a record that could be viewed by a potential buyer when the IT department is ready to take them out of service. And, since it’s 2025, HP is also claiming that this system needs and uses an AI of some sort.

Although HP is billing this as a way to improve sustainability and limit e-waste, we’d theorize that even with a report like this available, the economic gain of a program like this would be marginal at best. While the idea of giving each decommissioned laptop a clean bill of health is noble, it’s hard to imagine overworked IT staff carefully curating device histories when most used enterprise machines are already sold by the pallet.

HP is also proposing something that sounds a lot like Intel’s Management Engine, which we’re not too thrilled about around here. And also keep in mind that this is a company that has failed to innovate in any industry-leading way for as long as we can remember so we won’t expect this system to be widely adopted anytime soon.

Photo showing the wire-wrapped version and PCB version of MyCPU side-by-side.

This Homebrew CPU Got Its Start In The 1990s

[Sylvain Fortin] recently wrote in to tell us about his Homebrew CPU Project, and the story behind this one is truly remarkable.

He began working on this toy CPU back in 1994, over thirty years ago. After learning about the 74LS181 ALU in college he decided to build his own CPU. He made considerable progress back in the 90s and then shelved the project until the pandemic hit when he picked it back up again and started adding some new features. A little later on, a board house approached him with an offer to cover the production cost if he’d like to redo the wire-wrapped project on a PCB. The resulting KiCad files are in the GitHub repository for anyone who wants to play along at home.

An early prototype on breadboard

The ALU on [Sylvain]’s CPU is a 1-bit ALU which he describes as essentially a selectable gate: OR, XOR, AND, NOT. It requires more clock steps to compute something like an addition, but, he tells us, it’s much more challenging and interesting to manage at the microcode level. On his project page you will find various support software written in C#, such as an op-code assembler and a microcode assembler, among other things.

For debugging [Sylvain] started out with das blinkin LEDs but found them too limiting in short order. He was able to upgrade to a 136 channel Agilent 1670G Benchtop Logic Analyzer which he was fortunate to score for cheap on eBay. You can tell this thing is old from the floppy drive on the front panel but it is rocking 136 channels which is seriously OP.

The PCB version is a great improvement but we were interested in the initial wire-wrapped version too. We asked [Sylvain] for photos of the wire-wrapping and he obliged. There’s just something awesome about a wire-wrapped project, don’t you think? If you’re interested in wire-wrapping check out Wire Wrap 101.

A black and white illustration of people with headphones or microphones and floating empty speech bubbles. They appear happy and engaged with each other in a pleasant, park-like environment. In the foreground, on top of a wall, various anthropomorphized big tech logos like Apple, Amazon, and Google spy down on the people with binoculars like hunters assessing their prey. The text reads, "But like any good thing on the internet, there's a big tech monopoly trying to ruin it."

Long Live RSS!

While we know that many of you are reading Hackaday via our Really Simple Syndication (RSS) feed, we suspect that most people on the street wouldn’t know that it underlies a lot of the modern internet. [A. McNamee] and [A. Service] have created an illustrated history of RSS that proudly proclaims RSS is (not) dead (yet)!

While tens of millions of users used Google Reader before it was shut down, social media and search companies have tried to squeeze independent blogs and websites for an increasingly large part of their revenue, making it more and more difficult to exist outside the walled gardens of Facebook, Apple, Google, etc. Despite those of you that remember, RSS has been mostly forgotten.

RSS has been the backbone of the podcast industry, however, quietly serving feeds to millions of users everywhere with few of them aware that an open protocol from the 90s was serving up their content. As with every other corner of the internet where money could be made, corporate raiders have come to scoop up creators and skim the profits for themselves. Spotify has been the most egregious actor here, but the usual suspects of Apple, Google, and Amazon are also making plays to enclose the podcast commons.

If you’d like to learn more about how big tech is sucking the life out of the internet (and possibly how to reverse the enshittification) check out Cory Doctorow’s keynote from our very own Supercon.

One Laptop Manufacturer Had To Stop Janet Jackson Crashing Laptops

There are all manner of musical myths, covering tones and melodies that have effects ranging from the profound to the supernatural. The Pied Piper, for example, or the infamous “brown note.”

But what about a song that could crash your laptop just by playing it? Even better, a song that could crash nearby laptops in the vicinity, too? It’s not magic, and it’s not a trick—it was just a punchy pop song that Janet Jackson wrote back in 1989.

Continue reading “One Laptop Manufacturer Had To Stop Janet Jackson Crashing Laptops”

Chasing A Raspberry Pi Bottleneck

The Raspberry Pi has been used for many things over its lifetime, and we’re guessing that many of you will have one in perhaps its most common configuration, as a small server. [Thibault] has a Pi 4 in this role, and it’s used to back up the data from his VPS in a data centre. The Pi 4 may be small and relatively affordable, but it’s no slouch in computing terms, so he was extremely surprised to see it showing a transfer speed in bytes per second rather than kilobytes or megabytes. What was up? He set out to find the bottleneck.

We’re treated to a methodical step-through of all the constituent parts of the infrastructure between the data centre and the disk, and all of them show the speeds expected. Eventually, the focus shifts to the encryption he’s using, both on the USB disk connected to the Pi and within the backup program he’s using. As it turns out, while the Pi is good at many things, encryption is not its strong point. Some work with htop shows the cores maxed out as it tries to work with encrypted data, and he’s found the bottleneck.

To show just how useful a Pi server can be without the encryption, we’re using an early model to crunch a massive language corpus.

Header image: macrophile, CC BY 2.0.

Break The Air Gap With Ultrasound

In the world of information security, much thought goes into ensuring that no information can leave computer networks without expressly being permitted to do so. Conversely, a lot of effort is expended on the part of would-be attackers to break through whatever layers are present. [Halcy] has a way to share data between computers, whether they are networked or not, and it uses ultrasound.

To be fair, this is more of a fun toy than an elite exploit, because it involves a web interface that encodes text as ultrasonic frequency shift keying. Your computer speakers and microphone can handle it, but it’s way above the human hearing range. Testing it here, we were able to send text mostly without errors over a short distance, but at least on this laptop, we wouldn’t call it reliable.

We doubt that many sensitive servers have a sound card and speakers installed where you can overhear them, but by contrast, there are doubtless many laptops containing valuable information, so we could imagine it as a possible attack vector. The code is on the linked page, should you be interested, and if you want more ultrasonic goodness, this definitely isn’t the first time we have touched upon it. While a sound card might be exotic on a server, a hard drive LED isn’t.

Behind The Bally Home Computer System

Although we might all fundamentally recognize that gaming consoles are just specialized computers, we generally treat them, culturally and physically, differently than we do desktops or laptops. But there was a time in the not-too-distant past where the line between home computer and video game console was a lot more blurred than it is today. Even before Microsoft entered the scene, companies like Atari and Commodore were building both types of computer, often with overlapping hardware and capabilities. But they weren’t the only games in town. This video takes a look at the Bally Home Computer System, which was a predecessor of many of the more recognized computers and gaming systems of the 80s.

At the time, Bally as a company was much more widely known in the pinball industry, but they seemed to have a bit of foresight that the computers used in arcades would eventually transition to the home in some way. The premise of this console was to essentially start out as a video game system that could expand into a much more full-featured computer with add-ons. In addition to game cartridges it came with a BASIC interpreter cartridge which could be used for programming. It was also based on the Z80 microprocessor which was used in other popular PCs of the time, so in theory it could have been a commercial success but it was never able to find itself at the top of the PC pack.

Although it maintains a bit of a cult following, it’s a limited system even by the standards of the day, as the video’s creator [Vintage Geek] demonstrates. The controllers are fairly cumbersome, and programming in BASIC is extremely tedious without a full keyboard available. But it did make clever use of the technology at the time even if it was never a commercial success. Its graphics capabilities were ahead of other competing systems and would inspire subsequent designs in later systems. It’s also not the last time that a video game system that was a commercial failure would develop a following lasting far longer than anyone would have predicted.

Continue reading “Behind The Bally Home Computer System”