AirTags, Tiles, SmartTags And The Dilemmas Of Personal Tracking Devices

In an ideal world we would never lose our belongings, and not spend a single hour fruitlessly searching for some keys, a piece of luggage, a smartphone or one of the two dozen remote controls which are scattered around the average home these days. Since we do not live in this ideal world, we have had to come up with ways to keep track of our belongings, whether inside or outside our homes, which has led to today’s ubiquitous personal tracking devices.

Today’s popular Bluetooth-based trackers constantly announce their presence to devices set up to listen for them. Within a home, this range is generally enough to find the tracker and associated item using a smartphone, after which using special software the tracker can be made to sound its built-in speaker to ease localizing it by ear. Outside the home, these trackers can use mesh networks formed by smartphones and other devices to ‘phone home’ to paired devices.

This is great when it’s your purse. But this also gives anyone the ability to stick such a tracker device onto a victim’s belongings and track them without their consent, for whatever nefarious purpose. Yet it is this duality between useful and illegal that has people on edge when it comes to these trackers. How can we still use the benefits they offer, without giving stalkers and criminals free reign? A draft proposal by Apple and Google, submitted to the Internet Engineering Task Force (IETF), seeks to address these points but it remains complicated.

Continue reading “AirTags, Tiles, SmartTags And The Dilemmas Of Personal Tracking Devices”

Ask Hackaday: Why Do Self Driving Cars Keep Causing Traffic Jams?

Despite what some people might tell you, self-driving cars aren’t really on the market yet. Instead, there’s a small handful of startups and big tech companies that are rapidly developing prototypes of this technology. These vehicles are furiously testing in various cities around the world.

In fact, depending on where you live, you might have noticed them out and about. Not least because many of them keep causing traffic jams, much to the frustration of their fellow road users. Let’s dive in and look at what’s going wrong.

Continue reading “Ask Hackaday: Why Do Self Driving Cars Keep Causing Traffic Jams?”

Barcodes Enter The Matrix In 2027

Beep. We’ve come a long way since June 26, 1974 when the first bar code was scanned at a grocery store in Troy, Ohio. That legendary pack of Juicy Fruit proved that even the smallest of items could now carry numbers associated with inventory and price.

By now, we’re all too familiar with this sound as self-checkouts have become the norm. Whereas you yourself could at one time literally check out during the transaction, you must now be on your toes and play find the bar code on every item.

What does the consumer gain from the bar code today? Practically nothing, except the chance to purchase, and potentially return, the item without too much hassle. Well, the non-profit outfit that runs the bar code world — GS1 US — wants to change all that. By 2027, they are confident that all 1D bar codes will be replaced with 2D bar codes similar to QR codes. Why?

Continue reading “Barcodes Enter The Matrix In 2027”

Your Guide To Using Amazon’s Sidewalk Network For The Internet Of Things

As the Internet of Things became a mainstream reality, it raised an interesting point about connectivity. We quickly learned it wasn’t ideal to have every light bulb, toaster, and kettle buzzing away on our main WiFi networks. Nor was it practical to sign up for a cellular data plan for every tracker tag or remote sensor we wanted to use.

To solve this issue, various tech companies have developed their own low-power mesh networking solutions. Amazon’s Sidewalk network is one of the widest spread in the US. Now, it’s opening it up for wider use beyond its own products, and you can get in on the action.

Continue reading “Your Guide To Using Amazon’s Sidewalk Network For The Internet Of Things”

Smoke Some Weeds: Lasers Could Make Herbicide Obsolete

We’ve all tangled with unwelcome plant life at one point or another. Whether crabgrass infested your lawn, or you were put on weeding duty in your grandfather’s rose patch, you’ll know they’re a pain to remove, and a pain to prevent. For farmers, just imagine the same problem, but scaled up to cover thousands of acres.

Dealing with weeds typically involves harsh chemicals or excessive manual labor. Lasers could prove to be a new tool in the fight against this scourge, however, as covered by the BBC.

Continue reading “Smoke Some Weeds: Lasers Could Make Herbicide Obsolete”

Warmer Ice Cream?

What if you could tweak the recipe on ice cream to keep it frozen at higher temperatures? The idea comes from massive conglomerate Unilever. Among other things, the brand owns a wide variety of ice cream brands, from Ben & Jerry’s to the Magnum and Cornetto lines. Instead of running freezers at the industry standard of -18 °C (0°F), the company is experimenting with upping the temperature to -12 °C (10 °F) instead.

First off, you’d save a lot of electricity. Thanks to the way the industry works, the company actually owns the vast majority of the three million or so display freezers that are used to sell its stock to customers. Running at a higher temperature could slash the freezer’s energy use by 20% to 30%, according to the company’s calculations. The company also estimates that the energy used by these freezers makes up around 10% of its total greenhouse gas footprint, so it’s better for the environment too.

Of course, there’s savvy commercial reasons behind the idea. Unilever had noticed its ice cream sales dropping in 2022. The company believes this was in part due to retailers unplugging their freezers earlier than usual as winter approached, due to high energy bills. If the company’s freezers aren’t humming, they’re doing less business. If shaving down the freezer’s energy use helps retailers keep them plugged in and the lights on, that’s a net bonus to the company’s bottom line. It could also make their freezers unhospitable places for rival products, giving them an edge in the marketplace.

But this is all business intrigue. Let’s instead take a deeper look at ice cream.

Continue reading “Warmer Ice Cream?”

PUF Away For Hardware Fingerprinting

Despite the rigorous process controls for factories, anyone who has worked on hardware can tell you that parts may look identical but are not the same. Everything from silicon defects to microscopic variations in materials can cause profoundly head-scratching effects. Perhaps one particular unit heats up faster or locks up when executing a specific sequence of instructions and we throw our hands up, saying it’s just a fact of life. But what if instead of rejecting differences that fall outside a narrow range, we could exploit those tiny differences?

This is where physically unclonable functions (PUF) come in. A PUF is a bit of hardware that returns a value given an input, but each bit of hardware has different results despite being the same design. This often relies on silicon microstructure imperfections. Even physically uncapping the device and inspecting it, it would be incredibly difficult to reproduce the same imperfections exactly. PUFs should be like the ideal version of a fingerprint: unique and unforgeable.

Because they depend on manufacturing artifacts, there is a certain unpredictability, and deciding just what features to look at is crucial. The PUF needs to be deterministic and produce the same value for a given specific input. This means that temperature, age, power supply fluctuations, and radiation all cause variations and need to be hardened against. Several techniques such as voting, error correction, or fuzzy extraction are used but each comes with trade-offs regarding power and space requirements. Many of the fluctuations such as aging and temperature are linear or well-understood and can be easily compensated for.

Broadly speaking, there are two types of PUFs: weak and strong. Weak offers only a few responses and are focused on key generation. The key is then fed into more traditional cryptography, which means it needs to produce exactly the same output every time. Strong PUFs have exponential Challenge-Response Pairs and are used for authenticating. While strong PUFs still have some error-correcting they might be queried fifty times and it has to pass at least 95% of the queries to be considered authenticated, allowing for some error. Continue reading “PUF Away For Hardware Fingerprinting”