Cablecam Is An Exercise In System Integration

Drones have become the standard for moving aerial camera platforms, but another option that sees use in the professional world are cable cameras. As an exercise in integrating mechanics, electronics, and software, [maxipalay] created his own Cablecam.

Cablecam is build around a pair of machined wood plates, with some pulleys and motor reduction gearing between them. A brushless hobby motor moves the platform along the rope/cable, driven a drone ESC. Since the ESC doesn’t have a reverse function, [maxipalay] used four relays controlled by an Arduino to swap around the connections of two of the motor wires to reverse direction. The main onboard controller is a Raspberry Pi, connected to a camera module mounted on a two-axis gimbal for stabilization. A GPS module was also added for positioning information on long cables.

The base station is built around an Nvidia Jetson Nano connected to a 7″ screen mounted in a plastic case. Video, telemetry and control signals are communicated using the open-source Wifibroadcast protocol. This uses off-the-shelf WiFi hardware in connectionless mode to broadcast UDP packets, and avoids the lengthy WiFi reconnection process every time a connection drops out. The motion of Cablecam can be controlled manually using a potentiometer on the control station, or use the machine vision capabilities of the Jetson to automatically track and follow people.

We’ve seen several cable robots over the years, including a solar-powered sensor platform that resembles a sloth.

VTOL Tailsitter Flies With Quadcopter Control Software

Quadcopters are great for maneuverability and slow, stable flight, but it comes at the cost of efficiency. [Peter Ryseck]’s Mini QBIT quadrotor biplane brings in some of the efficiency of fixed-wing flight, without all the complexity usually associated with VTOL aircraft.

The Mini QBIT is just a 3″ mini quadcopter with a pair of wings mounted below the motors, turning it into a “tailsitter” VTOL aircraft. The wings and nosecone attach to the 3D printed frame using magnets, which allows them to pop off in a crash. There is no need for control surfaces on the wings since all the required control is done by the motors. The QBIT is based on a research project [Peter] was involved in at the University of Maryland. The 2017 paper states that the test aircraft used 68% less power in forward flight than hovering.

(Editor’s Note: [Peter] contacted us directly, and he’s got a newer paper about the aircraft.)

Getting the flight controller to do smooth transitions from hover to forward flight can be quite tricky, but the QBIT does this using a normal quadcopter flight controller running Betaflight. The quadcopter hovers in self-leveling mode (angle mode) and switches to acro mode for forward flight. However, as the drone pitches over for forward flight, the roll axis becomes the yaw axis and the yaw axis becomes the reversed roll axis. To compensate for this, the controller set up to swap these two channels at the flip of a switch. For FPV flying, the QBIT uses two cameras for the two different modes, each with its own on-screen display (OSD). The flight controller is configured to use the same mode switch to change the camera feed and OSD.

[Peter] is selling the parts and STL files for V2 on his website, but you can download the V1 files for free. However, the control setup is really the defining feature of this project, and can be implemented by anyone on their own builds.

For another simple VTOL project, check out [Nicholas Rehm]’s F-35 which runs on his dRehmFlight flight control software. Continue reading “VTOL Tailsitter Flies With Quadcopter Control Software”

Get Some Close Air Support With A Nerf Drone

Working from home has the major advantage of spending more time with loved ones, but it all that time can sometimes lead to friction. [Cory] found that Nerf battles with his kids is an effective way to blow off some steam, but felt he was getting a bit too much exercise in the process. Instead, he equipped an FPV quadcopter with a 3D printed Nerf gun to take his place.

Since manually reloading the Nerf gun after every shot wasn’t an option, he needed to create an autoloader. The darts are propelled by a pair of brushless drone motors mounted side-by-side, with just enough space for a dart the squeeze between. The motors are allowed to spin up, and then a dart is loaded servo-operated plunger, out of an off-the-shelf Nerf magazine. The motors ESCs and servo is controlled by an Arduino Nano, which receives the fire command from one of the spare outputs on the drone’s flight controller. To nerf gear is easily removable from the drone, so [Cory] to also fly the drone on more peaceful missions. See the video of one of the battles after the break. [Cory] might need to find an alternative control location to prevent himself being used as cover by his adversaries.

Nerf guns are a fun and harmless way to live out your sci-fi warfare fantasies, especially with the technology we have available these days. From FPV sentry guns to auto-aiming rifles, and heavy artillery, anything is possible.

Continue reading “Get Some Close Air Support With A Nerf Drone”

Quiet Wings, With Shape Memory Alloy

It’s a fact of operating an aircraft, that the make noise. If you’re an aviator you might want to quiet your craft to avoid annoying people nearby, or you might even want to operate in stealth mode. It turns out that there are different sources of noise on a plane depending upon the phase of flight. A NASA study found that when landing, a gap between the wing and leading edge slats causes air to cavitate causing unnecessary noise. Blocking that hole would allow for quieter landings, but there was no material suitable for both normal flight and the landing. That is, until Texas A&M researchers devised a way to use a shape memory alloy to do it.

In addition to two different shape memory alloy configurations, the study looks at a more conventional fiberglass composite, although this would only work for a limited number of wing configurations.

Continue reading “Quiet Wings, With Shape Memory Alloy”

The Gatwick Drone: Little By Little, The Story Continues To Unravel

If you remember the crazy events in the winter of 2018 as two airports were closed over reports of drone sightings, you might be interested to hear that there’s still a trickle of information about those happenings making it into the public domain as Freedom of Information responses.

Three Christmases ago the news media was gripped by a new menace, that of rogue drones terrorising aircraft. The UK’s Gatwick airport had been closed for several days following a spate of drone sightings, and authorities thundered about he dire punishments which would be visited upon the perpetrators when they were caught. A couple were arrested and later quietly released, and after a lot of fuss the story quietly disappeared.

Received Opinion had it that a drone had closed an airport, but drone enthusiasts, and Hackaday as a publication in their sphere, were asking awkward questions about why no tangible evidence of a drone ever having been present had appeared. Gradually the story unravelled with the police and aviation authorities quietly admitting that they had no evidence of a drone, and a dedicated band of drone enthusiasts has continues to pursue the truth about those few winter nights in 2018. The latest results chase up the possibility that the CAA might have received a description of the drone, and why when a fully functional drone detection system had been deployed and detected nothing they continued with the farce of closing the airport.

Perhaps the saddest thing about these and other revelations about the incident which have been teased from the authorities is that while they should fire up a scandal, it seems inevitable that they won’t. The police, the government, and the CAA have no desire to be reminded of their mishandling of the event, neither except for a rare bit of mild questioning do the media wish to be held to account for the execrable quality of their reporting. The couple who were wrongly arrested have not held back in their condemnation, but without the attention of any powerful vested interests it seems that some of the measures brought in as a response will never be questioned. All we can do is report any new developments in our little corner of the Internet, and of course keep you up to date with any fresh UK police drone paranoia.

Eliminate Vertical Stabiliser With ArduPlane

Flying wings are popular options for fixed-wing FPV flying, but they have one rather annoying characteristic: yaw wag. The flying wing will wobble on the yaw axis while flying, and this side-to-side movement is visible on the pilot’s FPV video feed. With a combination of split rudders and ArduPilot, [Think Flight] eliminated wing wag without using any vertical stabilizers.

Yaw wag usually occurs on flying wings that use a pair of small winglets instead of a large vertical stabilizer on the centerline. Split rudders, also known as differential spoilers, can be used for active yaw control by increasing drag on either wing independently. However, this requires very rapid corrections that are very difficult to do manually, so this is where ArduPilot comes in. [Think Flight] used its yaw dampening feature in combination with differential spoilers to completely eliminate vertical stabilizers and yaw wag. This is the same technique used on the B-2 stealth bomber to avoid radar reflecting vertical stabilizers. [Think Flight] also used these clamshells spoilers as elevons.

Using XFLR5 airfoil analysis software, [Think Flight] designed built a pair of flying wings to use these features. The first was successful in eliminating yaw wag, but exhibited some instability on the roll axis. After taking a closer look at the design with XFLR5, he found air it predicted that airflow would separate from the bottom surface of the wing at low angles of attack. After fixing this issue, he built a V2 to closely match the looks of the B2 bomber. Both aircraft were cut from EPP foam with an interesting-looking CNC hot wire cutter and laminated with Kevlar for strength. Continue reading “Eliminate Vertical Stabiliser With ArduPlane”

Electric RC Plane Flies For Almost 11 Hours

Electric RC aircraft are not known for long flight times, with multirotors usually doing 20-45 minutes, while most fixed wings will struggle to get past two hours. [Matthew Heiskell] blew these numbers out of the water with a 10 hour 45 minute flight with an RC plane on battery power. Condensed video after the break.

Flight stats right before touchdown. Flight time in minutes on the left, and miles travelled second from the top on the right.

The secret? An efficient aircraft, a well tuned autopilot and a massive battery. [Matthew] built a custom 4S 50 Ah li-ion battery pack from LG 21700 cells, with a weight of 2.85 kg (6.3 lbs). The airframe is a Phoenix 2400 motor glider, with a 2.4 m wingspan, powered by a 600 Kv brushless motor turning a 12 x 12 propeller. The 30 A ESC’s low voltage cutoff was disabled to ensure every bit of juice from the battery was available.

To improve efficiency and eliminate the need to maintain manual control for the marathon flight, a GPS and Matek 405 Wing flight controller running ArduPilot was added. ArduPilot is far from plug and play, so [Matthew] would have had to spend a lot of timing tuning and testing parameters for maximum flight efficiency. We are really curious to see if it’s possible to push the flight time even further by improving aerodynamics around the protruding battery, adding a pitot tube sensor to hold the perfect airspeed speed on the lift-drag curve, and possibly making use of thermals with ArduPilot’s new soaring feature.

A few of you are probably thinking, “Solar panels!”, and so did Matthew. He has another set of wings covered in them that he used to do a seven-hour flight. While it should theoretically increase flight time, he found that there were a number of significant disadvantages. Besides the added weight, electrical complexity and weather dependence, the solar cells are difficult to integrate into the wings without reducing aerodynamic efficiency. Taking into account what we’ve already seen of [rcflightest]’s various experiments/struggles with solar planes, we are starting to wonder if it’s really worth the trouble. Continue reading “Electric RC Plane Flies For Almost 11 Hours”