Make Your Music Simpler With The User-Unfriendliest Cassette Deck Ever

Call us crazy, but music was a whole lot more fun when it was on physical media. Or perhaps just easier to use, especially in the car. Whether your particular vintage favored CDs, cassettes, or even 8-tracks, being able to fish out that favorite album and slam it in the player while never taking your eyes off the road was a whole lot easier than navigating a playlist on a locked phone, or trying to control an infotainment system through soft buttons on a touch screen.

It seems like [Jarek Lupinski] is as much a Spotify Luddite as we are, since his “tape-deck” project is aimed to be as user-unfriendly as possible. It’s just an auto-reversing cassette deck movement stripped bare of all useful appurtenances, like a way to fast forward or rewind. You just put a cassette in and it plays, start to finish, before auto-reversing to play the other side in its entirety. It doesn’t even have a volume control — his cheeky advice is to “listen to louder or quieter albums” to solve that problem. Pretty easy, really, and not a EULA or advertisement in sight. Build files are available if you hate yourself enough to build one of your own.

All kidding aside, this is kind of a nice reminder of how much things have changed, and how much complexity we’ve layered onto the simplest of pleasures. If you like the minimalist approach of this project but not the deconstructed aesthetics, we’ve got you covered.

The board in question, with a Pi Pico soldered on, with old PCBs for macropads being used as captouch electrodes

Give Your Pi Pico Captouch Inputs For All Your Music Needs

Unlike many modern microcontrollers, RP2040 doesn’t come with a native capacitive touch peripheral. This doesn’t mean you can’t do it – the usual software-driven way works wonderfully, and only requires an external pullup resistor! In case you wanted a demonstration or you have a capacitive touch project in mind, this lighthearted video by [Jeremy Cook] is a must watch, and he’s got a healthy amount of resources for you in store, too!

In this video, [Jeremy] presents you with a KiCad schematic and an PCB design you can use to quickly add whole 23 capacitive touch sensing inputs to a Pi Pico! The board is flexible mechanically, easy to assemble as [Jeremy] demonstrates, and all the pins involved can still be used as regular GPIOs if you’d like. Plus, it’s fully open-source, can easily be assembled on your own, and available on Tindie too!

Of course, such a board doesn’t get created for no reason – [Jeremy] has a healthy amount of musical creations and nifty ideas to show off. We quite liked the trick of using old PCBs as capacitive touch sensing, using copper fills as electrodes – which has helped create an amusing “macropad of macropads”, and, there’s quite a bit more to see.

If capacitive touch projects ever struck a chord with you and you enjoy music-related hacking, [Jeremy]’s got a whole YouTube channel you ought to check out. Oh, and if one of the musical projects in the video caught your eye, it might just be the one we’ve featured previously! Continue reading “Give Your Pi Pico Captouch Inputs For All Your Music Needs”

Documenting Real Hidden Messages In Music

During the 1980s, a moral panic swept across the landscape with the mistaken belief that there were Satanic messages hidden in various games, books, and music that at any moment would corrupt the youth of the era and destroy society as we knew it. While completely unfounded, it turns out that there actually were some hidden messages in vinyl records of the time although they’d corrupt children in a different way, largely by getting them interested in computer science. [Dandu] has taken to collecting these historic artifacts, preserving the music and the software on various hidden recordings.

While it was possible to record only programs or other data to vinyl, much in the same way that cassette tapes can be used as a storage medium, [Dandu]’s research focuses mostly on records, tapes, and CDs which had data included alongside music. This includes not only messages or images, but often entire computer programs. In some cases these programs were meant to be used with the accompanying music, as was the case for The Other Side Of Heaven by Kissing The Pink with a program for the BBC Micro. Plenty of other contemporary machines are represented here too including the ZX Spectrum, Atari, Apple II, and the Commodore 64. The documentation extends through the CD era and even into modern music platforms like Spotify and Apple Music.

The process of extraction and recovery is detailed for each discovery, making it a comprehensive resource for retro computing enthusiasts stretching from the 80s to now. There are likely a few hidden pieces of data out there hidden in various antique storage media that [Dandu] hasn’t found yet, either. You could even make your own records with hidden programs provided you have some musical and programming talents, and a laser engraver for the record itself.

Generative AI Now Encroaching On Music

While it might not seem like it to a novice, music turns out to be a highly mathematical endeavor with precise ratios between chords and notes as well as overall structure of rhythm and timing. This is especially true of popular music which has even more recognizable repeating patterns and trends, making it unfortunately an easy target for modern generative AI which is capable of analyzing huge amounts of data and creating arguably unique creations. This one, called Suno, does just that for better or worse.

Unlike other generative AI offerings that are currently available for creating music, this one is not only capable of generating the musical underpinnings of the song itself but can additionally create a layer of intelligible vocals as well. A deeper investigation of the technology by Rolling Stone found that the tool uses its own models to come up with the music and then offloads the text generation for the vocals to ChatGPT, finally using the generated lyrics to generate fairly convincing vocals. Like image and text generation models that have come out in the last few years, this has the potential to be significantly disruptive.

While we’re not particularly excited about living in a world where humans toil while the machines create art and not the other way around, at best we could hope for a world where real musicians use these models as tools to enhance their creativity rather than being outright substitutes, much like ChatGPT itself currently is for programmers. That might be an overly optimistic view, though, and only time will tell.

Build Yourself A Vacuum Tube VU Meter

Volume unit (VU) meters are cool — it’s an undeniable fact. For some reason, humans just dig lights that flash along with sounds. You can build a VU meter using LEDs, or bulbs if you’re trapped in 1972. Or, you could use special vacuum tubes. [mircemk] did just that in their latest VU meter project.

The 6E2 vacuum tube is the part for the job in this case. You might think a specialist tube like this is expensive, but they can be had for just a few dollars from online retailers. They were often used as tuning indicators, but here, they’re used as a responsive VU meter instead. However, instead of a single bar going up and down, you get a pair of bars that raise to meet in the middle.

[mircemk] explains all the circuitry required to drive the tubes, and how to hook them up to create a two-channel stereo VU meter. The final circuit largely relies on a transistor, a diode, some passive components, and a DC-DC boost supply to generate 250 V for the tubes.

The final result looks pretty neat, particularly as it’s built into an old-school blue project box. We’ve seen similar projects from [mircemk] before, too. Continue reading “Build Yourself A Vacuum Tube VU Meter”

A Tape Echo For Anyone

If you’ve ever looked into how artists from the 1960s made their music, you’ll learn about the many inventive ways in which the tape recorder enabled new effects. One of the simplest of those is the tape echo, as distinct from a reverb which introduces the many delayed echoes of a large auditorium, an echo provides a single delayed version of the original. It’s something [Mark Gutierez] shows us as he makes a tape echo from a cheap Walkman-style cassette player. It’s hardly the highest quality of its ilk, but it does the job.

The player in question sports the ubiquitous Chinese mechanism that’s the last still in production. It has a radio incorporated which he doesn’t use, but for all that it has only a permanent magnet erase head rather than one driven from the bias oscillator. He first puts another head in the space between the record head and the pinch roller, then further modifies the cassette so a loop can be pulled out of the side of it, moving all heads off-board. As you can see in the video below the break it’s in no way high-fidelity, but with a couple of Eurorack mixer kits added on it makes for an interesting effect.

If you can lay your hands on a reel-to-reel machine, you can make a more traditional echo machine.

Continue reading “A Tape Echo For Anyone”

2024 Home Sweet Home Automation: A Piano-Controlled Smart Home

There’s a scene in Willy Wonka and the Chocolate Factory where a little flap in the wall flips down to reveal a small organ embedded there. Gene Wilder plays a bit of Rachmaninoff on the organ, and the giant door to the chocolate room slowly creaks open.

Once [Nathan Orick] got this into his head, he couldn’t get it out, and had to give it a go in his own home. Regrettably there’s no chocolate rooms in the house, so he’s using various chords and melodies to do things like control the lights and the TV, as you’ll see in the video after the break. Although this one may have started as a joke of a home automation scheme, [Nathan] thinks it turned out pretty solid, and so do we.

He already had the piano and a Raspberry Pi Zero lying around, so getting this up and running was mostly about connections and code. Speaking of connections, [Nathan] was hard-pressed to find a micro-USB to USB-B cord, so he ended up splicing one together. Simple enough. The harder part was getting Linux to recognize the keyboard, but all it took was touching all the pins with a multimeter, evidently. What’s a project without a little magic?

And not only did it show up, Linux went to the trouble of registering it as a MIDI device all on its own. Once [Nathan] obtained the port number, he had data printing to the console every time he played a note. Then it was mostly a matter of writing code to interact with MIDI data and track the notes as they’re played, and put it all together with Home Assistant. Be sure to check out the brief demo after the break.

Continue reading “2024 Home Sweet Home Automation: A Piano-Controlled Smart Home”