3D Printed Kinetic Art

Artificial muscles and soft robotics don’t get the respect they deserve, but [mikey77] is doing some very interesting work with artificial muscles that can be made on just about any 3D printer.

Like other artificial muscles and soft robotic actuators we’ve seen – like this walking sea slug and this eerie tentacle – [mikey77]’s muscles are powered by air. Instead of the usual casting method, he’s printing these muscles from Ninjaflex, a flexible plastic that is compatible with most 3D printers.

As they come off the printer, these 3D printed pneumatic muscles leak, and that means [mikey77] has to seal them. For that, he created a sealant out of Loctite fabric glue thinned with MEK. The addition of MEK dissolves the outer layer of Ninjaflex, allowing the glue to bond very, very well to the printed muscle.

So far, [mikey77] has created a pneumatic flower that blooms when air is added. He’s also created a muscle that can lift more than four pounds of weight with the help of a 3D printed skeleton. It’s a great way to experiment with flexible robots and pneumatic muscles, and we can’t wait to see what weird creatures can be created with these actuators.

Thanks [Lloyd] for sending this one in.

SAM Brick Layer

Brick Laying Robot Does It Better

Meet SAM, the Semi Automated Mason. SAM can lay bricks three times faster than a normal brick layer. SAM isn’t planning on taking away any jobs yet though — it still needs a human mason following behind to clean up the mortar.

The robot consists of a standard 6-axis industrial robot arm mounted to a track system with a conveyor belt style feeder of bricks. It picks up each brick, covers the side with mortar, and places it next to the last brick it laid. A mason still has to do the tricky parts, like corners and aesthetics — but SAM is getting better — it can very easily follow a pixelated map of an image and place bricks up to half an inch in or out from the wall, to create a embossed image.

Continue reading “Brick Laying Robot Does It Better”

CubeSat Challenge Winners Show Interesting Design Approaches

The winners are in for the GrabCad CubeSat Challenge, which asked designers to rethink the way that CubeSats are built. These tiny 10 cm square satellites are the hot thing in orbit, and the competition was looking for new ways to build and pack more into this tiny space. The winners offered some fascinating new approaches to building CubeSats, and some excellent design lessons that anyone can use.

The winner was FoldSat, by [Paolo Minetola]. His excellent design is a 3D printed folding case for a satellite that is built from just two 3D printed parts. The case can be snapped together and offers multiple ways to mount electronic components and sensors inside. [Paolo] estimates that it could save 40% time and 30% materials from existing CubeSat casings, which means more space inside and more time to build. It is an excellent example of how 3D printing can make things cheaper, easier and better, all at the same time.

Continue reading “CubeSat Challenge Winners Show Interesting Design Approaches”

Sphero Wasn’t Actually Behind The BB-8

Despite quite a few articles stating Sphero was behind the technology that made the real movie BB-8 droid, like this Tech Crunch article:

Sphero, makers of the eponymous spherical robots that you control with your smartphone — as well as the new BB-8 droid in Star Wars: The Force Awakens

and this excerpt from Fortune Magazine:

The same underlying technology (made by Sphero), which was licensed to create the version of BB-8 that graced the stage at the Star Wars Celebration…

Heck, even we drank the jungle juice with our original coverage! But now it seems the truth is finally coming out. As it turns out, it was actually built in Pinewood by the Creature Animatronics (CFX) team which includes [Matt Denton] — He’s the guy who built the Mantis Robot. A hacker / engineer — not a big toy company.

Two articles released this week on StarWars.com and EmpireOnline.com name various people from the CFX team at Pinewood as having built the movie puppets and the real BB-8. No mention of Sphero at all of course. They also state that they had to come up with the technology from scratch and that nothing like it already existed.

Continue reading “Sphero Wasn’t Actually Behind The BB-8”

Transformers, Birthday Cakes In Disguise

[Russel Munro] decided to go all-out for his son’s birthday cake: he made a Transformers robot cake that, well, transforms from a truck into a robot, Optimus Prime style. His impressive build has the actions of the original: first, the front rears up to lift the head, then the back lifts to form the body and the head and arms pop out of the top. Underneath the thin fondant exterior is a 3D printed body, driven by a mechanism in the base. He used fishing line to lift the parts, which is pulled by a motor salvaged from a CD player, being driven by an EasyDriver board from Sparkfun.

The main issue he had to overcome was weight: apparently he underestimated the weight of the fondant that covers the cake, and had to do some last-minute work to strengthen the drive mechanism, and skip plans for the more ornately decorated version that his wife had planned. But the look of glee on his son’s face when he operates it at the party is the best bit. In these days of CGI and computer games, it is good to remind the kids that there is still a lot of fun to be found in ingenuity and liberal quantities of hot glue.

Continue reading “Transformers, Birthday Cakes In Disguise”

It’s 10 PM, Do You Know Where Your Space Station Is At?

I still remember the first time I saw a satellite, I was 12 years old and was camping far away from the city lights. As I gazed up at the night sky, I could actually track satellites with my naked eye as they zoomed across the night’s sky. It was amazing. Nowadays, it’s getting harder to spot relatively small satellites with light pollution from large cities.

The International Space Station (ISS) on the other hand is a large piece of hardware — it’s about the size of a football field, and according to NASA it’s the second brightest object in the night sky.  So why don’t we see it more often? Well, part of the reason is that you don’t know where to look. [Grady Hillhouse] set out to change that by building a what is basically a 2 degrees of freedom robot arm that will point you to where the ISS is at any given moment.

[Grady] uses a stepper motor for the azimuth, and a standard servo for the elevation, all powered by an Nucleo F401 development board, and an Adafruit motor shield and slip ring. The structure is made using some Erector set like parts from Actobotics.

He wrote the code from this open source project here. He’s currently cleaning up his code, and says he’ll be posting it up shortly. In the mean time, you can watch a video detailing the build in the video after the break. Or if you can’t wait, you can visit NASA’s web site to receive email or SMS messages on when the ISS is view-able in your hood.

Continue reading “It’s 10 PM, Do You Know Where Your Space Station Is At?”

Sphero Riding Strandbeest Is A Robot With An Exoskeleton

[Theo Jansen] makes awesome things called Strandbeests; wind-driven automatons that roam beaches and art galleries. It has long been one of our favorite mechanisms. Newer, but also a favorite is the Sphero smartphone controlled orb. The combination of the two is epic!

You may remember seeing Sphero used to create a tiny BB8 replica. Inside the orb is a tiny robot capable of rolling itself hamster-wheel-style in any direction. It’s a rather powerful bot and that makes Sphero fast. The high RPM is what makes this hack possible. Sphero spins rapidly while perched on some rollerblade wheels. Gearing converts this to the rolling motion of the Strandbeest.

The original concept was posted a year ago but it was just now brought to our attention by [fhareide]  who is working on his own smaller Strandbeest driven by a Sphero. Since there are no assembly details on the original posting, you can follow along with [fhareide’s] documentation in order to complete your own build. So far [fhareide] imported the STL model into Autodesk Inventor, printed out one set of gears to insure the printer resolution could handle it, and assembled one set of legs.
We think of this as a kind of exoskeleton for a Sphero. We’ll keep an eye on this through the assembly, testing the drive mechanism and then the point where the whole thing becomes self-aware and either runs away to hide or terminates him.

Continue reading “Sphero Riding Strandbeest Is A Robot With An Exoskeleton”