Hackaday Prize Semifinalist: A Smart Battery Analyzer

[K.C. Lee]’s entry for the Hackaday Prize won’t cure cancer, wipe a disease from the planet, stop an alien invasion, or save the world. His battery charger and analyzer is, however, a useful little device for determining the charge and discharge characteristics of batteries, and can also be used as dual channel electronic load, current source, or power supply.

Inside [K.C.]’s device are all the tools required for charging and discharging lithium-ion, lead acid, and NiMH batteries. He’s doing this with a few slightly unusual circuits, including a SEPIC DC to DC converter, and an ‘analog’ PWM controller. these two techniques together mean [K.C.] can get away with smaller caps and inductors in his design, which also means less ripple on the output. As far as battery chargers and dischargers go, this one is very well designed.

Control of battery discharging and charging happens through a SILabs 8051-based microcontroller with USB. The UI is a simple Nokia LCD and an app running in Windows. If you want to save the world, this isn’t the project for you. If you need to test a few rechargeable batteries, this is a great device to have on the workbench.

The 2015 Hackaday Prize is sponsored by:

It’s 10 PM, Do You Know Where Your Space Station Is At?

I still remember the first time I saw a satellite, I was 12 years old and was camping far away from the city lights. As I gazed up at the night sky, I could actually track satellites with my naked eye as they zoomed across the night’s sky. It was amazing. Nowadays, it’s getting harder to spot relatively small satellites with light pollution from large cities.

The International Space Station (ISS) on the other hand is a large piece of hardware — it’s about the size of a football field, and according to NASA it’s the second brightest object in the night sky.  So why don’t we see it more often? Well, part of the reason is that you don’t know where to look. [Grady Hillhouse] set out to change that by building a what is basically a 2 degrees of freedom robot arm that will point you to where the ISS is at any given moment.

[Grady] uses a stepper motor for the azimuth, and a standard servo for the elevation, all powered by an Nucleo F401 development board, and an Adafruit motor shield and slip ring. The structure is made using some Erector set like parts from Actobotics.

He wrote the code from this open source project here. He’s currently cleaning up his code, and says he’ll be posting it up shortly. In the mean time, you can watch a video detailing the build in the video after the break. Or if you can’t wait, you can visit NASA’s web site to receive email or SMS messages on when the ISS is view-able in your hood.

Continue reading “It’s 10 PM, Do You Know Where Your Space Station Is At?”

Hackaday Links: August 30, 2015

A month ago, we ran a post about [Jim]’s rare and strange transparent microchips. He’s back at it again, this time taking a look at the inner workings of MOSFETs

The Unallocated Space hackerspace is moving, and they’re looking for a few donations to get the ball rolling.

Yes, it’s a Kickstarter for a 3D printer, but the LumiPocket is interesting, even if only on the basis of the engineering choices. It’s a UV laser resin printer, and they’re using a SCARA arm to move the laser around. They’re also doing a top-down resin tank; it requires more resin, but it seems to work well enough.

Around DC or northern Virginia? We’re going to be there on September 11th through the 13th. We’re holding a Hackaday Prize Worldwide meetup at Nova Labs in Reston, Virgina. Sign up now! Learn KiCAD with [Anool]! Meet [Sudo Bob]! It’ll be a blast.

Not around DC or NOVA? This Wednesday we’ll be hosting another chat on .io.

The GEnx is one of the most beautiful and advanced engines in the world, and that means [Harcoreta] oven on the RC groups forums has made one of the most beautiful electric ducted fans in the world. On the outside, it looks like a GEnx, including reverse thrust capabilities, but inside it’s pure electronics: a brushless motor rotates a 100mm, 18-blade fan. He’s hoping to mount it on a Bixler (!). We can’t wait for the video of the maiden.

Cake Knife Tessellates Cake

Rectangles? Squares? Pie slices? Who says dessert has to come in that shape? Why not triangles, circles, or even hexagons? Master of all things woodworking [Matthias Wandel] decided to solve this problem, and delved into a bit of metal working.

Using a strip of 26 gauge stainless steel, [Matthias] threw together some wood clamps in order to bend the metal into funky looking blade. He then put slits into a nice wooden handle and assembled the whole thing with a very slight positive curve, allowing you to roll the knife as you cut your confectionery.

As you can see in the following video, it works pretty well — and always, it’s a pleasure to see this man work.

Continue reading “Cake Knife Tessellates Cake”

Use Your Mouse Pointer to Send Data

[Ido Gendel] was thinking about new and interesting ways to send data between devices, when he realized that the answer was right in his hand. Literally: he decided to try sending data using the mouse pointer. What he came up with was an interesting hack that uses small movements of the mouse pointer to send data at up to 1200bps, or about 150 bytes per second.

The way he did this was very, very clever. He used an Arduino Leonardo that is set to emulate a mouse, working alongside his existing mouse. This setup means that he can use his existing mouse: the system just sees the Arduino as a second mouse, and the pointer just looks a little jerky when you zoom in. That is because the Arduino is just sending tiny movements, each of which is a code that represents a nybble (4 binary bits) of data. By using both a combination of three left-right or up-down movements, he was able to create 16 movements, each of which can encode 4 bits of data. Each of these encoding movements also returns the mouse to its origin point, so the mouse doesn’t mysteriously scroll off the screen when data is being sent.

Continue reading “Use Your Mouse Pointer to Send Data”

Go Forth on a Breadboard

Forth isn’t a shiny new programming language, but it has a staunch following because it is lightweight and elegant. The brainchild of [Chuck Moore], the language is deceptively simple. Words are character sequences delimited by spaces. In its simplest form, Forth knows a few basic words including–and this is the key–a word to define other words.

[Jean-Claude Wippler] likes to experiment with physical computing and he found a Forth image ready-made for the LPC1114. Why is that interesting? The LPC1114 is one of the few (or maybe the only) modern ARM processor in a breadboard-friendly DIP package. Since [Jean-Claude] had a chip sitting around, he had a Forth system up in no time. All he needed was a breadboard and a 3.3V serial connector. The chip has its own bootloader and the The Mecrisp-Stellaris Forth he used has over 300 words as well as the ability, of course, to add more.

Continue reading “Go Forth on a Breadboard”

Stuffing Everything on a DIP32 Package

Putting an full microcontroller platform in a DIP format is nothing new – the Teensy does it, the Arduino nano does it, and a dozen other boards do it. [Alex] and [Alexey] aren’t content with just a simple microcontroller breakout board so they’re adding a radio, an OLED, an SD card reader, and even more RAM to the basic Arduino platform, all in a small, easy to use package.

The DIPDuino, as [Alex] and [Alexy] are calling it features an ATmega1284 processor. To this, they’re adding a 128×32 pixel OLED, a micro SD slot, and 1Mbit of SRAM. The microcontroller is a variant that includes a 2.4 GHz Zigbee radio that allows for wireless connections to other DIPDuinos.

What are [Alex] and [Alexey] going to do with their cool little board? They’re planning on using the OLED for a watch, improve their software so the firmware can be updated from the SD card, and one of [Alex]’s friends wants to build a RepRap controller with one of these. There’s a lot of potential with this board, and we’re interested in seeing where the guys take the project from here.