Mini Quadrocopter Is Crazy Awesome

crazyflie_quadrocopter

Quadrocopters are all the rage lately, and while we have seen our fair share of large devices, [Arnaud Taffanel, Tobias Antonsson, and Marcus Eliasson] have been dutifully working to buck that trend. Their CrazyFlie is a miniature quadrocopter that uses its PCB as the main structure of the device.

Since the goal was to use a PCB as its frame, the copter’s footprint from the edge of one motor to the other is a modest 8cm, and it weighs in at a measly 20 grams! The entire platform runs on a Cortex-M3 CPU that takes input from an accelerometer and pair of gyroscopes to help keep its balance. Wireless communications are handled via a 2.4Ghz radio transmitter, and the quadrocopter’s power is supplied by a tiny 110 mAh LIPO battery pack scavenged from an R/C plane.

All of the control and telemetry is handled by a PC, which relays control messages it receives from the pilot’s game pad to the CrazyFlie. We’d love to see if they could retain this small footprint if everything was handled by the quadrocopter itself. Either way, this thing rocks – we most definitely want one!

Stick around to see a quick video of their mini quadrocopter in action, and be sure to check out our coverage of U. Penn’s quadrocopter creations if you are interested in seeing more.

Continue reading “Mini Quadrocopter Is Crazy Awesome”

The Concepts Behind Robotic Maze Solving

[Patrick McCabe’s] latest offering is a well-built maze-solving bot. This take on the competitive past-time is a little more approachable for your common mortal than the micro-bot speed maze solving we’ve seen. Don’t miss seeing the methodical process play out in the clips below the fold.

The playing field that [Patrick’s] robot is navigating is made up of a electrical-tape track on a white background. The two-inch tall double-decker bot is every economical. It uses an RBBB Arduino board to read an optical reflectance sensor array made by Pololu, then it drives a couple of geared motors using an L293D h-bridge breakout board. But we already know that [Patrick’s] a talented robot builder, this time around we’re happy to see his in-depth discussion of how to program a robot to solve a maze. In it he covers all of the different situations your robot might face and how to deal with them. Once you’ve dug through all of the concepts, dust off that bot you’ve got lying in the corner and start writing some new firmware.

Continue reading “The Concepts Behind Robotic Maze Solving”

Internet-controlled Robotic Arm

internet_robotic_arm

[Trav] was pondering virtual reality and decided it was no longer all that it was cracked up to be, so he created an experience in what he calls “Remote Reality”. While we have seen many installations over the years that allow people to remotely interact with objects across the globe, his Orbduino project consists of more than simply toggling lights on and off (though he’ll let you do that too).

In his house, he has set up a robotic playground of sorts that allows anyone who visits a chance to play around with the robotic arm he has installed there. The arm is situated in a pen filled with random objects which can be stacked and moved around. He also promises to show you something fun, provided you can guide the arm to pick up an object and hold it against the target positioned outside the pen.

He didn’t forget the obligatory remote light controls either. You can turn the overhead lights on and off, as well as control a multi-colored orb situated in the corner of the room. Most of the project’s interface is done with an Arduino Mega, which handles the robot arm interface, as well as messing with the light installations.

If you have some free time, swing by his site and give the robotic arm a try. It’s a fun little time waster that you will likely enjoy.  Just make sure to take it easy on his web server!

Amazing Quad Pick And Place System Tirelessly Sorts Your Legos

delta_robots

[Chris] is quite the devoted tinkerer. He recently wrote in to share what can only be described as a labor of love. His Quad Delta Robot system has been in the works for about six years now, split into periods of research, building, more research, and rebuilding until arriving at its current form.

The system is made up of four Lego NXT robots which are tasked with sorting Lego cubes by color as they come down a pair of conveyer belts. The robots were built to mimic commercially available pick and place robots which can be found on assembly lines all over the world.

Each robot operates independently, receiving signals via a light sensor which tells the robot where the next brick is located, as well as what color it is. This data is sent by the main NXT unit, which uses a lights sensor to determine brick color and position, relaying the information to the other bots via flashing LEDs. All of the robots receive the same signal, but much like NIC cards ignore frames not destined for their MAC, the bots ignore messages that are not addressed to them.

The machine is truly amazing to watch – it’s clear that all of [Chris’] research and planning has paid off. You have to check out the video embedded below to truly appreciate all of the work that went into this system. Also, be sure to swing by his site for a far more in-depth look at how the machines work, it is definitely worth the time.

Continue reading “Amazing Quad Pick And Place System Tirelessly Sorts Your Legos”

Robotics Merit Badge Just Announced

So you know how to build and program robots; what do you want, a badge? Now you can get just that, assuming you’re 11-18 years old and know all of the secret (or not so secret) handshakes, oaths, and pledges. The Boy Scouts of America recently announced the brand-new robotics merit badge. Now kids who cut their teeth building rule-breaking entries in the Pinewood Derby can have a go with robotics kits.

The requirements which must be satisfied to earn the badge start with safety and end with an exploration of the careers associated with the field. Along the way the Boy Scouts are encouraged to learn about keeping an engineering notebook during the design process, planning and programming the hardware, and attending a robotics competition like FIRST or VEX.

It’s not hard to see that this merit badge is right up our alley. We just hope it can grab some attention from the uber-popular badges like Stamp Collecting and Basketry.

Ball Bot Constructed From Power Tools And Pet Toys

ballbot

Hackaday forum member [machinelou] says he’s been fascinated with remote controlled hamster balls for quite some time. Inspired by a ball bot he saw on a BBC show, he finally picked up a 12″ plastic ball and got to work.

He used a small drill to provide the power required to roll the ball, and an Arduino is used as the brains of the device. This is his first major project outside of simple I/O and servo control, so he’s taking things slowly. While all this is a bit new to him, he already has things up and running to a degree as you can see in the video below. In its current state, the ball is programmed to roll forward and backwards for a few seconds before going back to sleep.

His future plans include adding a servo-controlled weight to allow him to steer the ball as well as using a pair of Zigbee modules in order to control the ball remotely.

It’s a neat little project, and definitely one that would be a fan favorite among kids. Stick around to see a quick video of his bot’s progress thus far.

Continue reading “Ball Bot Constructed From Power Tools And Pet Toys”

One-eyed, One-armed Metal Rolling Roomba Robot

roomba_robot

[Erik] was looking for a sturdy robotics platform and was initially considering the iRobot Create, until he found that he could score a Roomba Discovery series for a fraction of the price. The Discovery includes a battery, which is missing from the iCreate, though it also has all of the standard vacuum bits included as well.

He immediately removed all of the vacuum parts once he got his hands on the Roomba, and began adding the support structure to house the rest of his robot’s components. The robot is controlled via a small laptop which sits on top of the Roomba’s base, and features a panning and telescoping webcam to provide feedback to the operator.

The robot has been under construction for a little over a year now, and has had a few upgrades over that time. The original laptop was swapped out for a newer dual-core model, and the webcam was upgraded to a model featuring motion tracking. The whole thing has been skinned in thin sheet metal for a sleek look, and he has added a servo-driven arm as well.

The project is not quite complete, and he hasn’t really stated what he plans on using the robot for, but it looks good so far – we can’t wait to see it when it’s finished.