Robot Bartender Is The Life Of The Party

As the old saying goes, when the only tool you have is a 6 DOF industrial robotic arm, every problem looks like an opportunity to make it serve up adult beverages. [benkokes] found himself in this familiar predicament and did what any of us would do, but his process wasn’t without a few party fouls as well as a few head-scratchers.

One of the common problems that people who suddenly find themselves with an old industrial robot have is that there’s usually no documentation or instructions. This was true here with the added hiccup of the robot’s UI being set to Chinese. Luckily no one had changed the root password, and eventually he was able to get the robot up and working.

Getting it to make drinks was a different matter altogether. [benkokes] needed a custom tool to hold the cup as well as shake it, and 3D printed a claw-style end effector with a lid. Out of his multi-colored pack of party cups, however, the orange cups were different enough in dimension to cause problems for the shaking lid which was discovered when the robot spilled a drink all over the table.

Eventually, though, the robot was successfully serving drinks at a party. One of [benkokes]’s friends happened to be a puppet maker and was able to outfit it with a tailored tuxedo for the party as well, and he also programmed it to dance in between serving drinks, completing the AI revolution we have all been hoping for. Perhaps unsurprisingly, this is a common project for people who suddenly come to posses a large general-purpose industrial robot, while others build robots specifically for this task alone.

Continue reading “Robot Bartender Is The Life Of The Party”

Robot Balances Ball On A Plate

Imagine trying to balance a heavy metal ball bearing on a cafeteria tray. It’s not the easiest thing in the world! In fact, it’s perhaps a task better automated, as [skulkami3000] demonstrates with this robotic build.

The heart of the build is a flat platform fitted with a resistive touchscreen panel on top. The panel is hooked up to a Teensy 4.0 microcontroller. When a heavy ball bearing is placed on the touch panel, the Teensy is thus able to accurately read its position. It then controls a pair of NEMA 17 stepper motors via TCM2208 drivers in order to tilt the panel in two axes in order to keep the ball in the centre of the panel. Thanks to its quick reactions and accurate sensing, it does a fine job of keeping the ball centred, even when the system is perturbed.

Projects like these are a great way to learn the basics of PID control. Understanding these concepts will serve you well in all sorts of engineering contexts, from controlling industrial processes to building capable quadcopter aircraft. Continue reading “Robot Balances Ball On A Plate”

For A Robot Claw, The Eyes Have It

Have you ever wished your hand had an extra feature? Like, maybe, a second thumb? A scope probe pinky maybe? Well, if you are building a robot effector, you get to pick what extra features it has. [Gokux] has the aptly named Cam Claw, which is a 3D printed claw with a built-in camera so you can see exactly what it is doing.

The brains are an ESP32-S3 and the eyes — well, the eye technically — uses an OV3660 camera. There’s even a light in case you are in a dark space. A servo drives it, and the printed gear train is pretty fun to watch, as you can see in the video below.

This project is all about the mechanics. The electronic hardware is trivial. A battery, a power controller, and a servo complement the ESP32 and camera. Six LEDs for light, and the job is done.

Obviously, the gripping power will only be as good as the servo. However, we really liked the idea of putting eyes on a robot hand where they count. Of course, the claw you really want a camera on is in the arcade. We’d like to see cameras on some other robot appendages.

Continue reading “For A Robot Claw, The Eyes Have It”

Reverse Engineering A Robot Mower’s Fence

There are a variety of robot mower systems on the market employing different navigation methods, and [Eelco] has the story of how one of these was reverse engineered. Second hand Roomba lawnmowers kept appearing for very low prices without the electronics driving the buried-wire fence that keeps them from going astray. The story of their reverse engineering provides us with a handy insight into their operation.

The wire fence is a loop of wire in the ground, so it was modeled using a few-ohm resistor and the waveform across it from a working driver captured with an oscilloscope. The resulting 3 kHz waveform surprisingly to us at least doesn’t appear to encode any information, so it could be replicated easily enough with an ESP32 microcontroller. An LM386 audio amplifier drives the loop, and with a bit of amplitude adjustment the mower is quite happy in its fake fence.

Robot mower hacking has become quite the thing around here.

A camera-based microscope is on a stand, looking down towards a slide which is held on a plastic stage. The stage is held in place by three pairs of brass rods, which run to red plastic cranks mounted to three stepper motors. On the opposite side of each crank from the connecting rod is a semicircular array of magnets.

Designing An Open Source Micro-Manipulator

When you think about highly-precise actuators, stepper motors probably aren’t the first device that comes to mind. However, as [Diffraction Limited]’s sub-micron capable micro-manipulator shows, they can reach extremely fine precision when paired with external feedback.

The micro-manipulator is made of a mobile platform supported by three pairs of parallel linkages, each linkage actuated by a crank mounted on a stepper motor. Rather than attaching to the structure with the more common flexures, these linkages swivel on ball joints. To minimize the effects of friction, the linkage bars are very long compared to the balls, and the wide range of allowed angles lets the manipulator’s stage move 23 mm in each direction.

To have precision as well as range, the stepper motors needed closed-loop control, which a magnetic rotary encoder provides. The encoder can divide a single rotation of a magnet into 100,000 steps, but this wasn’t enough for [Diffraction Limited]; to increase its resolution, he attached an array of alternating-polarity magnets to the rotor and positioned the magnetic encoder near these. As the rotor turns, the encoder’s local magnetic field rotates rapidly, creating a kind of magnetic gear.

A Raspberry Pi Pico 2 and three motor drivers control this creation; even here, the attention to detail is impressive. The motor drivers couldn’t have internal charge pumps or clocked logic units, since these introduce tiny timing errors and motion jitter. The carrier circuit board is double-sided and uses through-hole components for ease of replication; in a nice touch, the lower silkscreen displays pin numbers.

To test the manipulator’s capabilities, [Diffraction Limited] used it to position a chip die under a microscope. To test its accuracy and repeatability, he traced the path a slicer generated for the first layer of a Benchy, vastly scaled-down, with the manipulator. When run slowly to reduce thermal drift, it could trace a Benchy within a 20-micrometer square, and had a resolution of about 50 nanometers.

He’s already used the micro-manipulator to couple an optical fiber with a laser, but [Diffraction Limited] has some other uses in mind, including maskless lithography (perhaps putting the stepper in “wafer stepper”), electrochemical 3D printing, focus stacking, and micromachining. For another promising take on small-scale manufacturing, check out the RepRapMicron.

Continue reading “Designing An Open Source Micro-Manipulator”

Robotic Canoe Puts Robot Arms To Work

Most robots get around with tracks or wheels, but [Dave] had something different in mind. Sufficiently unbothered by the prospect of mixing electronics and water, [Dave] augmented a canoe with twin, paddle-bearing robotic arms to bring to life a concept he had: the RowboBoat. The result? A canoe that can paddle itself with robotic arms, leaving the operator free to take a deep breath, sit back, and concentrate on not capsizing.

There are a couple of things we really like about this build, one of which is the tidiness of the robotic platform that non-destructively attaches to the canoe itself with custom brackets. A combination of aluminum extrusion and custom brackets, [Dave] designed it with the help of 3D scanning the canoe as a design aid. A canoe, after all, has nary a straight edge nor a right angle in sight. Being able to pull a 3D model into CAD helps immensely in such cases; we have also seen this technique used in refitting a van into an off-grid camper.

The other thing we like is the way that [Dave] drives the arms. The two PiPER robotic arms are driven with ROS, the Robot Operating System on a nearby Jetson Orin Nano SBC. The clever part is the way [Dave] observed that padding and steering a canoe has a lot in common with a differential drive, which is akin to how a tank works. And so, for propulsion, ROS simply treats the paddle-bearing arms as though they were wheels in a differential drive. The arms don’t seem to mind a little water, and the rest of the electronics are protected by a pair of firmly-crossed fingers.

The canoe steers by joystick, but being driven by ROS it could be made autonomous with a little more work. [Dave] has his configuration and code for RowboBoat up on GitHub should anyone wish to take a closer look. Watch it in action in the video, embedded below.

Continue reading “Robotic Canoe Puts Robot Arms To Work”