Watch A Web Page Fetch Itself Over TLS, Complete With Commentary

TLS, byte by byte performs an unusual and interesting function: it fetches itself over HTTPS, and provides a complete annotation of what’s going on in the process, one byte at a time. Visit the site and give the button a click to watch it happen, it’s neat!

Transport Layer Security (TLS) is what’s responsible for encrypting traffic over the internet, and it’s normally implemented on top of TCP to encrypt an application-layer protocol like HTTP (resulting in HTTPS and the little padlock icon in browsers indicating a connection with a web site is encrypted.) Back in the day, traffic over the internet was commonly unencrypted, but nowadays no communication or hardware is too humble for encryption and methods are easily accessible.

So for what purpose would someone actually need or use such an implementation of TLS? Well, probably no one actually needs it. But it is a userspace TLS implementation in javascript that may fit a niche for someone, and it certainly provides beautifully-indented and annotated binary data in the process. Sound up your alley? The GitHub repository for the project has all the details, so give it a look.

Get That Dream Job, With A Bit Of Text Injection

Getting a job has always been a tedious and annoying process, as for all the care that has been put into a CV or resume, it can be still headed for the round file at the whim of some corporate apparatchik. At various times there have also been dubious psychometric tests and other horrors to contend with, and now we have the specter of AI before us. We can be tossed aside simply because some AI model has rejected our CV, no human involved. If this has made you angry, perhaps it’s time to look at [Kai Greshake]’s work. He’s fighting back, by injecting a PDF CV with extra text to fool the AI into seeing the perfect candidate, and even fooling AI-based summarizers.

Text injection into a PDF is a technique the same as used by the less salubrious end of the search engine marketing world, of placing text in a web page such that a human can’t read it but a machine can. The search engine marketeers put them in tiny white text or offset them far out of the viewport, and it seems the same is possible in a PDF. He’s put the injection in white and a tiny font, and interestingly, overlaid it several times.

Using the ChatGPT instance available in the Bing sidebar he’s then able to fool it into an affirmative replay to questions about whether he should be hired. But it’s not just ChatGPT he’s targeting, another use of AI in recruitment is via summarizing tools. By injecting a lot of text with phrases normally used in conclusion of a document, he’s able to make Quillbot talk about puppies. Fancy a go yourself? He’s put a summarizer online, in the link above.

So maybe the all-seeing AI isn’t as clever as we’ve been led to believe. Who’d have thought it!

This Week In Security: .zip Domains, Zip Scanning

The world may not be ready, but the .zip Top Level Domain (TLD) is here. It’s a part of the generic TLD category, which was expanded to allow applications for custom TLDs. Google has led the charge, applying for 101 such new TLDs, with .zip being one of the interesting ones. Public registration for .zip domains has been open for a couple weeks, and some interesting domains have been registered, like update.zip, installer.zip, and officeupdate.zip.

The obvious question to ask is whether this new TLD can be abused for scamming and phishing purposes. And the answer is yes, sure it can. One of the trickiest ways is to use the AT symbol @ in a URL, which denotes user info at the beginning of the URL. It usually is used to include a username and password, like http://username:password@192.168.1.1/. That is pretty obvious, but what about https://google.com@bing.com? Still looks weird. The catch that really prevents this technique being abused is that slashes are disallowed in user data, so a abusive URL like https://google.com∕gmail∕inbox@bing.com is right out.

Except, take a look at that last link. Looks like it has slashes in it, so it should take you to google, and ignore the AT symbol. But it doesn’t, it goes to Bing. You may have guessed, it’s Unicode shenanigans again. Those aren’t slashes, they’re U2215, the division slash. And that means that a .zip TLD could be really sneaky, if the apparent domain is one you trust. Continue reading “This Week In Security: .zip Domains, Zip Scanning”

Two Factor Authentication Apps: Mistakes To Malware

Everyone in security will tell you need two-factor authentication (2FA), and we agree. End of article? Nope. The devil, as always with security, is in the details. Case in point: in the last few weeks, none less than Google messed up with their Google Authenticator app. The security community screamed out loud, and while it’s not over yet, it looks like Google is on the way to fixing the issue.

Since 2FA has become a part of all of our lives – or at least it should – let’s take a quick dip into how it works, the many challenges of implementing 2FA correctly, what happened with Google Authenticator, and what options you’ve got to keep yourself safe online.

Continue reading “Two Factor Authentication Apps: Mistakes To Malware”

This Week In Security: TPM And BootGuard, Drones, And Coverups

Full disk encryption is the go-to solution for hardening a laptop against the worst-case scenario of physical access. One way that encryption can be managed is through a Trusted Platform Module (TPM), a chip on the motherboard that manages the disk encryption key, and only hands it over for boot after the user has authenticated. We’ve seen some clever tricks deployed against these discrete TPMs, like sniffing the data going over the physical traces. So in theory, an integrated TPM might be more secure. Such a technique does exist, going by the name fTPM, or firmware TPM. It uses a Trusted Execution Environment, a TEE, to store and run the TPM code. And there’s another clever attack against that concept (PDF).

It’s chip glitching via a voltage fault. This particular attack works against AMD processors, and the voltage fault is triggered by injecting commands into the Serial Voltage Identification Interface 2.0 (SVI2). Dropping the voltage momentarily to the AMD Secure Processor (AMD-SP) can cause a key verification step to succeed even against an untrusted key, bypassing the need for an AMD Root Key (ARK) signed board firmware. That’s not a simple process, and pulling it off takes about $200 of gear, and about 3 hours. This exposes the CPU-unique seed, the board NVRAM, and all the protected TPM objects.

So how bad is this in the real world? If your disk encryption only relies on an fTPM, it’s pretty bad. The attack exposes that key and breaks encryption. For something like BitLocker that can also use a PIN, it’s a bit better, though to really offer more resistance, that needs to be a really long PIN: a 10 digit PIN falls to a GPU in just 4 minutes, in this scenario where it can be attacked offline. There is an obscure way to enable an “enhanced PIN”, a password, which makes that offline attack impractical with a secure password.

And if hardware glitching a computer seems to complicated, why not just use the leaked MSI keys? Now to be fair, this only seems to allow a bypass of Intel’s BootGuard, but it’s still a blow. MSI suffered a ransomware-style breach in March, but rather than encrypt data, the attackers simply threatened to release the copied data to the world. MSI apparently refused to pay up, and source code and signing keys are now floating in the dark corners of the Internet. There have been suggestions that this leak impacts the entire line of Intel processors, but it seems likely that MSI only had their own signing keys to lose. But that’s plenty bad, given the lack of a revocation system or automatic update procedure for MSI firmware. Continue reading “This Week In Security: TPM And BootGuard, Drones, And Coverups”

This Week In Security: Oracle Opera, Passkeys, And AirTag RFC

There’s a problem with Opera. No, not that kind of opera. The Oracle kind. Oracle OPERA is a Property Management Solution (PMS) that is in use in a bunch of big-name hotels around the world. The PMS is the system that handles reservations and check-ins, talks to the phone system to put room extensions in the proper state, and generally runs the back-end of the property. It’s old code, and handles a bunch of tasks. And researchers at Assetnote found a serious vulnerability. CVE-2023-21932 is an arbitrary file upload issue, and rates at least a 7.2 CVSS.

It’s a tricky one, where the code does all the right things, but gets the steps out of order. Two parameters, jndiname and username are encrypted for transport, and the sanitization step happens before decryption. The username parameter receives no further sanitization, and is vulnerable to path traversal injection. There are two restrictions to exploitation. The string encryption has to be valid, and the request has to include a valid Java Naming and Directory Interface (JNDI) name. It looks like these are the issues leading Oracle to consider this flaw “difficult to exploit vulnerability allows high privileged attacker…”.

The only problem is that the encryption key is global and static. It was pretty straightforward to reverse engineer the encryption routine. And JDNI strings can be fetched anonymously from a trio of endpoints. This lead Assetnote to conclude that Oracle’s understanding of the flaw is faulty, and a much higher CVSS score is appropriate. Particularly with this Proof of Concept code, it is relatively straightforward to upload a web shell to an Opera system.

The one caveat there is that an attacker has to get network access to that install. These aren’t systems intended to be exposed to the internet, and my experience is that they are always on a dedicated network connection, not connected to the rest of the office network. Even the interconnect between the PMS and phone system is done via a serial connection, making this network flaw particularly hard to get to. Continue reading “This Week In Security: Oracle Opera, Passkeys, And AirTag RFC”

Thermal Camera Plus Machine Learning Reads Passwords Off Keyboard Keys

An age-old vulnerability of physical keypads is visibly worn keys. For example, a number pad with digits clearly worn from repeated use provides an attacker with a clear starting point. The same concept can be applied to keyboards by using a thermal camera with the help of machine learning, but it also turns out that some types of keys and typing styles are harder to read than others.

Researchers at the University of Glasgow show how machine learning can pull details from thermal images like these quickly and effectively.

Touching a key with a fingertip imparts a slight amount of body heat, and that small amount of heat can be spotted by a thermal sensor. We’ve seen this basic approach used since at least 2005, and two things have changed since then: thermal cameras gotten much more common, and researchers discovered that by combining thermal readings with machine learning, it’s possible to eke out slight details too difficult or subtle to spot by human eye and judgement alone.

Here’s a link to the research and findings from the University of Glasgow, which shows how even a 16 symbol password can be attacked with an average accuracy of 55%. Shorter passwords are much easier to decipher, with the system attacking 6 and 8 symbol passwords with an accuracy between 92% and 80%, respectively. In the study, thermal readings were taken up to a full minute after the password was entered, but sooner readings result in higher accuracy.

A few things make things harder for the system. Fast typists spend less time touching keys, and therefore transfer less heat when they do, making things a little more challenging. Interestingly, the material of the keycaps plays a large role. ABS keycaps retain heat far more effectively than PBT (a material we often see in custom keyboard builds like this one.) It also turns out that the tiny amount of heat from LEDs in backlit keyboards runs effective interference when it comes to thermal readings.

Amusingly this kind of highly modern attack would be entirely useless against a scramblepad. Scramblepads are vintage devices that mix up which numbers go with which buttons each time the pad is used. Thermal imaging and machine learning would be able to tell which buttons were pressed and in what order, but that still wouldn’t help! A reminder that when it comes to security, tech does matter but fundamentals can matter more.