What Happened With Supermicro?

Back in October 2018, a bombshell rocked the tech industry when Bloomberg reported that some motherboards made by Supermicro had malicious components on them that were used to spy or interfere with the operation of the board, and that these motherboards were found on servers used by Amazon and Apple. We covered the event, looking at how it could work if it were true. Now seven months have passed, and it’s time to look at how things shook out.

Continue reading “What Happened With Supermicro?”

This Week In Security: Backdoors In Cisco Switches, PGP Spoofing In Emails, Git Ransomware

Some switches in Cisco’s 9000 series are susceptible to a remote vulnerability, numbered CVE-2019-1804 . It’s a bit odd to call it a vulnerability, actually, because the software is operating as intended. Cisco shipped out these switches with the same private key hardcoded in software for all root SSH logins. Anyone with the key can log in as root on any of these switches.

Cisco makes a strange claim in their advisory, that this is only exploitable over IPv6. This seems very odd, as there is nothing about SSH or the key authentication process that is IPv6 specific. This suggests that there is possibly another blunder, that they accidentally left the SSH port open to the world on IPv6. Another possibility is that they are assuming that all these switches are safely behind NAT routers, and therefore inaccessible through IPv4. One of the advantages/disadvantages of IPv6 is that there is no NAT, and all the network devices are accessible from the outside network. (Accessible in the sense that a route exists. Firewalling is still possible, of course.)

It’s staggering how many devices, even high end commercial devices, are shipped with unintentional yet effective backdoors, just like this one. Continue reading “This Week In Security: Backdoors In Cisco Switches, PGP Spoofing In Emails, Git Ransomware”

Faxsploit – Exploiting A Fax With A Picture

Security researchers have found a way to remotely execute code on a fax machine by sending a specially crafted document to it. So… who cares about fax? Well apparently a lot of persons are still using it in many institutions, governments and industries, including the healthcare industry, legal, banking and commercial. Bureaucracy and old procedures tend to die hard.

This is one of those exploits that deserve proper attention, for many reasons. It is well documented and is a great piece of proper old school hacking and reverse engineering. [Eyal Itkin], [Yannay Livneh] and [Yaniv Balmas] show us their process in a nicely done article that you can read here. If you are into security hacks, it’s really worth reading and also worth watching the DEFCON video. They focused their attention in a all-in-one printer/scanner/fax and the results were as good as it gets.

Our research set out to ask what would happen if an attacker, with merely a phone line at his disposal and equipped with nothing more than his target`s fax number, was able to attack an all-in-one printer by sending a malicious fax to it.

In fact, we found several critical vulnerabilities in all-in-one printers which allowed us to ‘faxploit’ the all-in-one printer and take complete control over it by sending a maliciously crafted fax.

As the researchers note, once an all-in-one printer has been compromised, it could be used to a wide array of malicious activity, from infiltrating the internal network, to stealing printed documents even to mining Bitcoin. In theory they could even produce a fax worm, replicating via the phone line.

The attack summary video is bellow, demonstrating an exploit that allows an attacker to pivot into an internal network and taking over a Windows machine using Eternal Blue NSA exploit.

Continue reading “Faxsploit – Exploiting A Fax With A Picture”

This Week In Security: Facebook Hacked Your Email, Cyber On The Power Grid, And A Nasty Zero-day

Ah, Facebook. Only you could mess up email verification this badly, and still get a million people to hand over their email address passwords. Yes, you read that right, Facebook’s email verification scheme was to ask users for their email address and email account password. During the verification, Facebook automatically downloaded the account’s contact list, with no warning and no way to opt out.

The amount of terrible here is mind-boggling, but perhaps we need a new security rule-of-thumb for these kind of situations. Don’t ever give an online service the password to a different service. In order to make use of a password in this case, it’s necessary to handle it in plain-text. It’s not certain how long Facebook stored these passwords, but they also recently disclosed that they have been storing millions of Facebook and Instagram passwords in plain-text internally.

This isn’t the first time Facebook has been called out for serious privacy shenanigans, either: In early 2018 it was revealed that the Facebook Android app had been uploading phone call records without informing users. Mark Zuckerberg has recently outlined his plan to give Facebook a new focus on privacy. Time will tell whether any real change will occur.

Cyber Can Mean Anything

Have you noticed that “cyber” has become a meaningless buzz-word, particularly when used by the usual suspects? The Department of Energy released a report that contained a vague but interesting sounding description of an event: “Cyber event that causes interruptions of electrical system operations.” This was noticed by news outlets, and people have been speculating ever since. What is frustrating about this is the wide range of meaning covered by the term “cyber event”. Was it an actual attack? Was Trinity shutting down the power stations, or did an intern trip over a power cord?
Continue reading “This Week In Security: Facebook Hacked Your Email, Cyber On The Power Grid, And A Nasty Zero-day”

Raspberry Pi Becomes The Encrypted Password Keeper You Need

Unless you’re one of the cool people who uses the same password everywhere, you might be in need of a hardware device that keeps your usernames and passwords handy. The Passkeeper is a hardware password storage system built on a Raspberry Pi. It encrypts your passwords, and only through the magic of a special key fob will you ever get your passwords out of this device.

The hardware for this device is built around the Raspberry Pi Zero. You might be questioning the use of a Pi Zero, but given that it’s an entire Linux system for just a few bucks, it only makes sense. The rest of the hardware is a tiny OLED SPI display, an RFID card reader, a few LEDs, some wire, and some solder. A 3D printed case keeps everything together.

Of course, this build is all about the software, and for that, the Passkeeper device is built in Go, with a system that builds a web interface, builds the firmware, and writes everything to an SD card. Usage is simply plugging the Passkeeper into the USB port of your computer where it presents itself as a network interface. Everything is available by pinging an IP address, and after that the web UI will log your usernames and passwords. All this data is encrypted, and can only be unlocked if an RFID key fob is present. It’s an interesting idea and certinaly inexpensive. It’s not quite as polished as something like the Mooltipass, but if you have a Pi around and don’t have a password keeper, this is something to build this weekend.

Stealing DNA By Phone

Data exfiltration via side channel attacks can be a fascinating topic. It is easy to forget that there are so many different ways that electronic devices affect the physical world other than their intended purpose. And creative security researchers like to play around with these side-effects for ‘fun and profit’.

Engineers at the University of California have devised a way to analyse exactly what a DNA synthesizer is doing by recording the sound that the machine makes with a relatively low-budget microphone, such as the one on a smart phone. The recorded sound is then processed using algorithms trained to discern the different noises that a particular machine makes and translates the audio into the combination of DNA building blocks the synthesizer is generating.

Although they focused on a particular brand of DNA Synthesizers, in which the acoustics allowed them to spy on the building process, others might be vulnerable also.

In the case of the DNA synthesizer, acoustics revealed everything. Noises made by the machine differed depending on which DNA building block—the nucleotides Adenine (A), Guanine (G), Cytosine (C), or Thymine (T)—it was synthesizing. That made it easy for algorithms trained on that machine’s sound signatures to identify which nucleotides were being printed and in what order.

Acoustic snooping is not something new, several interesting techniques have been shown in the past that raise, arguably, more serious security concerns. Back in 2004, a neural network was used to analyse the sound produced by computer keyboards and keypads used on telephones and automated teller machines (ATMs) to recognize the keys being pressed.

You don’t have to rush and sound proof your DIY DNA Synthesizer room just yet as there are probably more practical ways to steal the genome of your alien-cat hybrid, but for multi-million dollar biotech companies with a equally well funded adversaries and a healthy paranoia about industrial espionage, this is an ear-opener.

We written about other data exfiltration methods and side channels and this one, realistic scenario or not, it’s another cool audio snooping proof of concept.

Shadowhammer, WPA3, And Alexa Is Listening: This Week In Computer Security

Let’s get caught up on computer security news! The big news is Shadowhammer — The Asus Live Update Utility prompted users to download an update that lacked any description or changelog. People thought it was odd, but the update was properly signed by Asus, and antivirus scans reported it as safe.

Nearly a year later, Kaspersky Labs announced they had confirmed this strange update was indeed a supply chain attack — one that attacks a target by way of another vendor. Another recent example is the backdoor added to CCleaner, when an unknown actor compromised the build system for CCleaner and used that backdoor to target other companies who were using CCleaner. Interestingly, the backdoor in CCleaner has some similarities to the backdoor in the Asus updater. Combined with the knowledge that Asus was one of the companies targeted by this earlier breach, the researchers at Kaspersky Lab suggest that the CCleaner attack might have been the avenue by which Asus was compromised.

Shadowhammer sits quietly on the vast majority of machines it infects. It’s specifically targeted at a pool of about 600 machines, identified by their network card’s MAC address. We’ve not seen any reporting yet on who was on the target list, but Kaspersky is hosting a service to check whether your MAC is on the list.

While we’re still waiting for the full technical paper, researchers gave a nearly 30 minute presentation about Shadowhammer, embedded below the break along with news about Dragonblood, Amazon listening to your conversations, and the NSA delivering on Ghidra source code. See you after the jump!
Continue reading “Shadowhammer, WPA3, And Alexa Is Listening: This Week In Computer Security”