1btn – An Open Source Dash

The availability of cheap radios, omni-present WiFi and powerful web services means the IoT wave is here to stay. Amazon got into the act with its “do only one thing” Dash button. But a more interesting solution would be an IoT “do it all” button.

[Anand] has been working on his 1btn Open Source WiFi connected IoT button for a while. It connects to the Internet over WiFi to trigger whatever action you have assigned to it using a simple, online interface. It’s reconfigurable and open source. Which means it can be used in pretty imaginative ways, and if needed, can be re-flashed with your own custom firmware should you decide to really get under its hood.

The 1btn’s ESP8266 module is usually in sleep mode, waking up when the button is pressed, making the connection, performing the task and then going back to sleep once confirmation is received. A Red/Green LED indicates if the action was successful or not. You can set it up to send e-mails, messages, tweets or perform actions via a custom script, API or the IFTTT – maker channel. To make it hacker friendly, all of the ESP8266 GPIO pins are accessible via headers. This makes it convenient to add external sensors, for example. There’s also a (unpopulated) QFN footprint to allow adding an ATmega device (168P/328P) whose GPIO pins are also accessible via headers. This opens up a large number of additional applications for the device such as home automation.

On the software side, the 1btn connects to a web console, where you can set up an account, configure the device, register its MAC ID, assign it an alias and set up its actions. All of the source files for the 1btn – firmware, enclosure, schematic, BOM, PCB layout and example use cases – are posted on his Github repository.

The HackadayPrize2016 is Sponsored by:

Refreshable Braille Display And Braille Keyboard

Only about 10% of blind people around the world can read Braille. One primary reason is the high cost of Braille displays. The cost is a result of their complexity and reliability – required to ensure that they are able to handle wear and tear.

[Vijay] has been working since 3 years on a Refreshable Braille Display but has only recently been able to make some substantial progress after teaming up with [Paul D’souza]. During his initial experiments, he used dot matrix printer heads, but the current version uses tiny vibration motors as used in mobile phones. He’s converting rotary motion of the tiny motors in to linear movement for pushing the Braille “cell” pins up and down. The eccentric weight on the vibration motor is replaced with a shaped cam. Continuous rotation of the cam is limited by a stopper, which is part of the 3D printed housing that holds the motors. Another 3D printed part has three cam followers, levers, springs and Braille pins rolled in one piece, to create half a Braille cell. Depending on the cam position, the pins are either pushed up or down. One Braille cell module consists of two cam follower pieces, a housing for six vibration motors, and a cover plate. Multiple modules are chained together to form the display.

The next step would be to work on the electronics – in particular ensuring that he is able to control the motor movement in both directions in a controlled manner. Chime in with your comments if you have any ideas. The 3D design files are available from his Dropbox folder.

Continue reading “Refreshable Braille Display And Braille Keyboard”

Cardboard And Paperclip CNC Plotter Destined For Self-Replication

Last November, after [HomoFaciens]’ garbage-can CNC build, we laid down the gauntlet – build a working CNC from cardboard and paperclips. And now, not only does OP deliver with a working CNC plotter, he also plans to develop it into a self-replicating machine.

To be honest, we made the challenge with tongue firmly planted in cheek. After all, how could corrugated cardboard ever make a sufficiently stiff structure for the frame of a CNC machine? [HomoFaciens] worked around this by using the much less compliant chipboard – probably closest to what we’d call matboard here in the States. His templates for the machine are extremely well thought-out; the main frame is a torsion box design, and the ways and slides are intricate affairs. Non-cardboard parts include threaded rod for the lead screws, servos modified for continuous rotation, an Arduino, and the aforementioned paperclips, which find use in the user interface, limit switches, and in the extremely clever encoders for each axis. The video below shows highlights of the build and the results.

True, the machine can only move a pen about, and the precision is nothing to brag about. But it works, and it’s perfectly capable of teaching all the basics of CNC builds to a beginner, which is a key design goal. And it’s well-positioned to move to the next level and become a machine that can replicate itself. We’ll be watching this one very closely.

Continue reading “Cardboard And Paperclip CNC Plotter Destined For Self-Replication”

The Incredible Success Of World Create Day

When people come together, great things happen. Last weekend, the Hackaday Community all over the world self organized and came together in 64 cities for World Create Day. It was a coalescence of people who want to make a difference in life, and don’t want to do it alone. Thank you to everyone who participated, to those who organized their own local event, and to everyone who joined in online. Let’s take a look at some of what went on.

Nigeria’s power grid is not reliable and waiting around isn’t going to make the problem any better. The gathering in Lagos spent World Create Day talking about ways to overcome power grid problems and improve access to electricity for everyone.

Cape Town, South Africa had a huge turnout! They had speakers, lightning talks, project presentations, and broke into smaller groups to brainstorm ideas.

Continue reading “The Incredible Success Of World Create Day”

A Raspberry Pi In An FPGA

Somehow or another, the Raspberry Pi has become a standardized form factor for single board computers. There are now Raspberry Pi-shaped objects that can do anything, and between the Odroid and bizarre Intel Atom-powered boards, everything you could ever want is now packaged into something that looks like a Raspberry Pi.

Except for one thing, of course, and that’s where [antti.lukats]’s entry for the 2016 Hackaday Prize comes in. He’s creating a version of the Raspberry Pi based on a chip that combines a fast ARM processor and an FPGA in one small package. It’s called the ZynqBerry and will, assuredly, become one of the best platforms to learn FPGA trickery on.

Xilinx’ Zynq comes with a dual-core ARM Cortex A9 running around 1GHZ, and from that fact alone should be about comparable to the original Raspberry Pi. Also inside the Zynq SoC is a very capable FPGA that [antti] is using to drive HDMI at 60hz, and can stream video from a Raspberry Pi camera to a display.

Last year for the Hackaday Prize, [antti] presented some very cool stuff, including a tiny FPGA development board no bigger than a DIP-8 chip. He’s hackaday.io’s resident FPGA wizard, and the ZynqBerry is the culmination of a lot of work over the past year or so. While it’s doubtful it will be as powerful as the latest Raspberry Pis and Pi clones, this is a phenomenal piece of work that puts an interesting twist on the usual FPGA development boards.

The HackadayPrize2016 is Sponsored by:

A Green Powered Sailboat

Drones fill the sky raining hellfire on unsuspecting civilians below. Self-driving cars only cause half as many accidents as carbon-based drivers. Autonomous vehicles are the future, no matter how bleak that future is. One thing we haven’t seen much of is autonomous marine vehicles, be they submarines, hovercrafts, or sailboats. That’s exactly what [silvioBi] is building for his entry into the Hackaday Prize: a sailboat that will ply the waters of Italy’s largest lake.

Every boat needs a hull, but this project will need much more, from electronics to solar panels to sensors. Luckily for [silvio], choosing a hull is as simple as heading over to eBay. [silvio] picked up a fiberglass boat hull for about €40 that fill fit both is needs and his workbench.

The electronics are a bit trickier, but the basic plan is to cover the deck with solar panels, and use a few sensors including GPS, IMU, and an anemometer to steer this sailboat around a lake. Building an autonomous vehicle is a hard challenge, and for the electronics, [silvio] has a trick up his sleeve: he’s using redundant electronics. All the sensors are connected via an I2C bus, so why not put two microcontrollers on that bus in a master and slave configuration? It won’t add much mass, and given the problems had by a few of the teams behind robotic sailing competitions, a bit of redundancy isn’t a bad thing to have.

The HackadayPrize2016 is Sponsored by:

2016 Hackaday Prize Begins Anew And Anything Goes

Today marks the beginning of the Anything Goes challenge, a 2016 Hackaday Prize contest that will reward 20 finalists with $1000 for solving a technology problem and a chance at winning the entire Hackaday Prize: $150,000 and a residency at the Supplyframe Design Lab in Pasadena.

anythinggoes (1)The Hackaday Prize is empowering hackers, designers, and engineers to use their time to Build Something that Matters. For the next five weeks what matters is solving a technology problem. Have an idea to power vehicles without polluting the atmosphere? Great! Want to figure out how to get your washing machine to work better? We want to see that too. Anything goes so design it, prototype it, document it and you could be one of the twenty entries headed to the final round.

We have already seen a groundswell of progress in the Hackaday Prize. The first round, Design Your Concept, had over five hundred entries! But today is a brand new day, a new challenge, and all bets are off. It’s the perfect clean slate for you to join the movement.

Start your project right now and submit it to the Hackaday Prize. If you have previously started a project page you can add it to the Anything Goes challenge using the “Submit Project To” dropdown menu on the left sidebar of your project page.

Talk about your idea, document your plan for seeing it through to completion, and then start writing build logs as you begin to work on the prototype. On May 30th our panel of judges will review all the entries and choose twenty that exhibit the best the Hackaday Prize has to offer.

You have the talent. You can make the time. You will make a difference. The greatest things in the world start small but with passion. This is your moment, now start your journey.

The HackadayPrize2016 is Sponsored by: