A broken bolt is removed by welding on a hut and then using a wrench to unscrew.

Using A MIG Welder, Acetylene Torch, And Air Hammer To Remove A Broken Bolt

If your shop comes complete with a MIG welder, an acetylene torch, and an air hammer, then you have more options than most when it comes to removing broken bolts.

In this short video [Jim’s Automotive Machine Shop, Inc] takes us through the process of removing a broken manifold bolt: use a MIG welder to attach a washer, then attach a suitably sized nut and weld that onto the washer, heat the assembly with the acetylene torch, loosen up any corrosion on the threads by tapping with a hammer, then simply unscrew with your wrench! Everything is easy when you know how!

Of course if your shop doesn’t come complete with a MIG welder and acetylene torch you will have to get by with the old Easy Out screw extractor like the rest of us. And if you are faced with a nasty bolt situation keep in mind that lubrication can help.

Continue reading “Using A MIG Welder, Acetylene Torch, And Air Hammer To Remove A Broken Bolt”

Our hacker converts an old hard disk drive into a disc sander.

Making A Variable Speed Disc Sander From An Old Hard Drive

This short video from [ProShorts 101] shows us how to build a variable speed disc sander from not much more than an old hard drive.

We feel that as far as hacks go this one ticks all the boxes. It is clever, useful, and minimal yet comprehensive; it even has a speed control! Certainly this hack uses something in a way other than it was intended to be used.

Take this ingenuity and add an old hard drive from your junkbox, sandpaper, some glue, some wire, a battery pack, a motor driver, a power socket and a potentiometer, drill a few holes, glue a few pieces, and voilà! A disc sander! Of course the coat of paint was simply icing on the cake.

The little brother of this hack was done by the same hacker on a smaller hard drive and without the speed control, so check that out too.

One thing that took our interest while watching these videos is what tool the hacker used to cut sandpaper. Here we witnessed the use of both wire cutters and a craft knife. Perhaps when you’re cutting sandpaper you just have to accept that the process will wear out the sharp edge on your tool, regardless of which tool you use. If you have a hot tip for the best tool for the job when it comes to cutting sandpaper please let us know in the comments! (Also, did anyone catch what type of glue was used?)

If you’re interested in a sander but need something with a smaller form factor check out how to make a sander from a toothbrush! Continue reading “Making A Variable Speed Disc Sander From An Old Hard Drive”

Homemade VNA Delivers High-Frequency Performance On A Budget

With vector network analyzers, the commercial offerings seem to come in two flavors: relatively inexpensive but limited capabilities, and full-featured but scary expensive. There doesn’t seem to be much middle ground, especially if you want something that performs well in the microwave bands.

Unless, of course, you build your own vector network analyzer (VNA). That’s what [Henrik Forsten] did, and we’ve got to say we’re even more impressed by the results than we were with his earlier effort. That version was not without its problems, and fixing them was very much on the list of goals for this build. Keeping the build affordable was also key, which resulted in some design compromises while still meeting [Henrik]’s measurement requirements.

The Bill of Materials includes dual-channel broadband RF mixer chips, high-speed 12-bit ADCs, and a fast FPGA to handle the torrent of data and run the digital signal processing functions. The custom six-layer PCB is on the large side and includes large cutouts for the directional couplers, which use short lengths of stripped coaxial cable lined with ferrite rings. To properly isolate signals between stages, [Henrik] sandwiched the PCB between a two-piece aluminum enclosure. Wisely, he printed a prototype enclosure and lined it with aluminum foil to test for fit and function before committing to milling the final version. He did note some leakage around the SMA connectors, but a few RF gaskets made from scraps of foil and solder braid did the trick.

This is a pretty slick build, especially considering he managed to keep the price tag at a very reasonable $300. It’s more expensive than the popular NanoVNA or its clones, but it seems like quite a bargain considering its capabilities.

Making Parts Feeders Work Where They Weren’t Supposed To

[Chris Cecil] had a problem. He had a Manncorp/Autotronik MC384V2 pick and place, and needed more feeders. The company was reluctant to support an older machine and wanted over $32,000 to supply [Chris] with more feeders. He contemplated the expenditure… but then came across another project which gave him pause. Could he make Siemens feeders work with his machine?

It’s one of those “standing on the shoulders of giants” stories, with [Chris] building on the work from [Bilsef] and the OpenPNP project. He came across SchultzController, which could be used to work with Siemens Siplace feeders for pick-and-place machines. They were never supposed to work with his Manncorp machine, but it seemed possible to knit them together in some kind of unholy production-focused marriage. [Chris] explains how he hooked up the Manncorp hardware to a Smoothieboard and then Bilsef’s controller boards to get everything working, along with all the nitty gritty details on the software hacks required to get everything playing nice.

For an investment of just $2,500, [Chris] has been able to massively expand the number of feeders on his machine. Now, he’s got his pick and place building more Smoothieboards faster than ever, with less manual work on his part.

We feature a lot of one-off projects and home production methods, but it’s nice to also get a look at methods of more serious production in bigger numbers, too. It’s a topic we follow with interest. Video after the break.

Continue reading “Making Parts Feeders Work Where They Weren’t Supposed To”

The Brymen BM788BT shown along side other digital multimeters.

New Brymen Bluetooth BM788BT Digital Multimeter Coming Soon

If you’re into electronics you can never have too many digital multimeters (DMMs). They all have different features, and if you want to make multiple measurements simultaneously, it can pay to have a few. Over on his video blog [joe smith] reviews the new Brymen BM788BT, which is a new entry into the Bluetooth logging meter category.

This is a two-part series: in the first he runs the meter through its measurement paces, and in the second he looks at the Bluetooth software interface. And when we say “new” meter, we mean brand new, this is a review unit that you can’t yet get in stores.

According to a post on the EEVblog, this Bluetooth variant was promised five years ago, and back then Brymen even had the Bluetooth module pin header on the PCB, but it has taken a long time to get the feature right. If you scroll through the thread you will find that Brymen has made its protocol specification available for the BM780 series meters.

It looks like some Bluetooth hacking might be required to get the best out of this meter. Of course we’re no strangers to hacking DMMs around here. We’ve taken on the Fluke 77 for example, and these DMM tweezers.

Continue reading “New Brymen Bluetooth BM788BT Digital Multimeter Coming Soon”

DIY Soldering Tweezers, Extra Thrifty

It started when [Mitxela] was faced with about a hundred incorrectly-placed 0603 parts. Given that he already owned two TS101 soldering irons, a 3D printer, and knows how to use FreeCAD (he had just finished designing a custom TS101 holder) it didn’t take long to create cost-effective DIY soldering tweezers.

Two screws allow adjusting the irons to ensure the tips line up perfectly.

The result works great! The TS101 irons are a friction-fit and the hinge (designed using the that-looks-about-right method) worked out just fine on the first try. Considering two TS101 irons are still cheaper than any soldering tweezer he could find, and one can simply undock the TS101s as needed, we call this a solid win.

One feature we really like is being able to precisely adjust the depth of each iron relative to each other, so that the tips can be made to line up perfectly. A small screw and nut at the bottom end of each holder takes care of that. It’s a small but very thoughtful design feature.

Want to give it a try? The FreeCAD design file (and .stl model) is available from [Mitxela]’s project page. Just head to the bottom to find the links.

We’ve seen DIY soldering tweezers using USB soldering irons from eBay but the TS101 has a form factor that seems like a particularly good fit.

Buyer Beware: Cheap Power Strips Hold Hidden Horrors

We’ve got a love-hate relationship with discount tool outlet Harbor Freight: we hate that we love it so much. Apparently, [James Clough] is of much the same opinion, at least now that he’s looked into the quality of their outlet strips and found it somewhat wanting.

The outlet strips in question are Harbor Freight’s four-foot-long, twelve-outlet strips, three of which are visible from where this is being written. [James] has a bunch of them too, but when he noticed an intermittent ground connection while using an outlet tester, he channeled his inner [Big Clive] and tore one of the $20 strips to bits. The problem appears to be poor quality of the contacts within each outlet, which don’t have enough spring pre-load to maintain connection with the ground pin on the plug when it’s wiggled around. Actually, the contacts for the hot and neutral don’t look all that trustworthy either, and the wiring between the outlets is pretty sketchy too. The video below shows the horrors within.

What’s to be done about this state of affairs? That’s up to you, of course. We performed the same test on all our outlets and the ground connections all seemed solid. So maybe [James] just got a bad batch, but he’s still in the market for better-quality strips. That’s going to cost him, though, since similar strips with better outlets are about four times the price of the Harbor Freight units. We did find a similar strip at Home Depot for about twice the price of the HF units, but we can’t vouch for the quality. As always, caveat emptor.

Continue reading “Buyer Beware: Cheap Power Strips Hold Hidden Horrors”