Tech In Plain Sight: Table Saw Safety

If you ask around a wood shop, most people will agree that the table saw is the most dangerous tool around. There’s ample evidence that this is true. In 2015, over 30,000 ER visits happened because of table saws. However, it isn’t clear how many of those are from blade contact and how many are from other problems like kickback.

We’ve seen a hand contact a blade in a high school shop class, and the results are not pretty. We’ve heard of some people getting off lucky with stitches, reconstructive surgery, and lifelong pain. They are the lucky ones. Many people lose fingers, hands, or have permanent disfiguration and loss of function. Surgeons say that the speed and vigor of the blade means that some of the tissue around the cut vanishes, making reconstruction very difficult.

Modern Tech

These days, there are systems that can help prevent or mitigate these kinds of accidents. The most common in the United States is the patented SawStop system, which is proprietary — that is, to get it, you have to buy a saw from SawStop.

Continue reading “Tech In Plain Sight: Table Saw Safety”

A Portable Chainsaw Sawmill

Unless you’re running a commercial logging operation, with specialized saws, log grapples, mills, transportation for the timber, and the skilled workers needed to run everything, it’s generally easier to bring a sawmill to the wood instead of taking the wood to the sawmill. Especially for a single person, something like a chainsaw mill is generally a much easier and cost effective way to harvest a small batch of timber into lumber. These chainsaw mills can still be fairly cumbersome though, but [izzy swan] has a new design that fits an entire mill onto a hand cart for easy transportation in and out of a forest.

The entire mill is built out of a sheet and a half of plywood, most of which is cut into strips and then assembled into box girders for the track. The remainder of plywood is machined on a CNC to create the carriage for the chainsaw to attach as well as a few other parts to fix the log in place. The carriage has a 4:1 reduction gear on it to winch the chainsaw along the length of the log which cuts the log into long boards. After the milling is complete, the entire mill can be disassembled and packed down onto its hand cart where it can be moved on to the next project fairly quickly.

For a portable mill, it boasts respectable performance as well. It can cut logs up to 11 feet in length and about 30 inches across depending on the type of chainsaw bar used, although [izzy swan] has a few improvements planned for the next prototypes that look to make more consistent, uniform cuts. Chainsaws are incredibly versatile tools to have on hand as well, we’ve seen them configured into chop saws, mortisers, and even fixed to the end of a CNC machine.

Thanks to [Keith] for the tip!

Continue reading “A Portable Chainsaw Sawmill”

Hacker Tools, Hacked Tools

We just love a good DIY tool project, and more so when it’s something that we can actually use cobbled together from stuff in our closet, or hacked out of cheap “toys”. This week we saw both a superb Pi Pico-based logic analyzer and yet another software frontend for the RTL-SDR dongle, and they both had us thinking of how good we have it.

If you don’t already have a logic analyzer, or if you have one of those super-cheap 8-channel jobbies, it might be worth your while to check out the Pico firmware simply because it gets you 24 channels, which is more than you’ll ever need™. At the low price of $4, maybe a little more if you need to add level shifters to the circuit to allow for 5 V inputs, you could do a lot worse for less than the price of a fancy sweet coffee beverage.

And the RTL dongle; don’t get us started on this marvel of radio hacking. If you vaguely have interest in RF, it’s the most amazing bargain, and ever-improving software just keeps adding functionality. The post above adds HTML5 support for the RTL-SDR, allowing you to drive it with code you host on a web page, which makes the entire experience not only cheap, but painless. Talk about a gateway drug! If you don’t have an RTL-SDR, just go out and buy one. Trust me.

What both of these hacker tools have in common, of course, is good support by a bunch of free and open software that makes them do what they do. This software enables a very simple piece of hardware to carry out what used to be high-end lab equipment functions, for almost nothing. This has an amazing democratizing effect, and paves the way for the next generation of projects and hackers. I can’t think of a better way to spend $20.

Pico Logic Analyzer Gets New Version

[Happy Little Diodes] built a Pi Pico logic analyzer designed by [El Dr. Gusman] using the original design. But he recently had a chance to test the newest version of the design, which is a big upgrade. You can see his take on the new design in the video below.

The original design could sample 24 channels at 100 MHz and required two different PCBs. The new version uses a single board and can operate up to 400 MHz. There’s also a provision for chaining multiple boards together to get more channels. You can set the level shifters to use 5 V, 3.3 V, or an external voltage. Since [Happy] is working on a ZX Spectrum, the 5 V conversion is a necessity.

The code is on GitHub, although it warns you that version six — the one seen in the video — isn’t stable, so you might have to wait to make one on your own. The software looks impressive and there may be some effort to integrate with Sigrok.

If you missed our coverage of the earlier version, you can still catch up. Dead set on Sigrok support? [Pico-Coder] can help you out.

Continue reading “Pico Logic Analyzer Gets New Version”

3D Printed Caliper Extensions Make Hole Measurement Easier

If there’s anything more frustrating than mounting holes that don’t line up with the thing you’re mounting, we don’t know what it could be. You measure as carefully as possible, you drill the holes, and yet at least one hole ends up being just out of place. Sometimes you can fudge it, but other times you’ve got to start over again. It’s maddening.

Getting solid measurements of the distance between holes would help, which is where these neat snap-on attachments for digital calipers come in. [Chris Long] came up with the 3D printed tools to make this common shop task a little easier, and they look promising. The extensions have cone-shaped tips that align perfectly with the inside edge of the caliper jaws, which lines the jaws up with the center of each hole. You read the center-to-center distance directly off the caliper display, easy peasy.

Of course, there’s also the old machinist’s trick (last item) about zeroing out the calipers after reading the diameter of one of the holes and then measuring the outside-to-outside distance between the two holes. That works great when you’ve got plenty of clearance, but the shorter inside jaws might make measuring something like a populated PCB with this method tricky. For the price of a little filament and some print time, these might be just the tool to get you out of a bind.

Continue reading “3D Printed Caliper Extensions Make Hole Measurement Easier”

VNAs And Crystals

Oscillators may use crystals as precise tuned circuits. If you have a vector network analyzer (VNA) — or even some basic test equipment — you can use it to learn the parameters of a crystal. [All Electronics Channel] has the details, and you can see how in the video below.

There was a time when a VNA was an exotic piece of gear, but these days they are relatively common. Crystal parameters are important because crystals have a series resonance and a parallel resonance and they are not at the same frequency. You also may need to know how much loading capacitance you have to supply to get the crystal at the right frequency.

Sometimes, you want to pull the crystal frequency, and the parameters will help you figure that out, too. It can also help if you have a crystal specified as series in a parallel-mode oscillator or vice versa.

If you don’t have a VNA, you can use a tracking signal generator, as [Grégory] shows towards the middle of the video. The quality of a tuned circuit depends on the Q factor, and crystals have a very high Q factor.

We did something similar in 2018. The other way to pull a crystal frequency is a bit extreme.

Continue reading “VNAs And Crystals”

OSHW Battery Tester Aims To Help Tame Lithium Cells

It’s no exaggeration to say that the development of cheap rechargeable lithium-ion batteries has changed the world. Enabling everything from smartphones to electric cars, their ability to pack an incredible amount of energy into a lightweight package has been absolutely transformative over the last several decades. But like all technologies, there are downsides to consider — specifically, the need for careful monitoring during charging and discharging.

As hardware hackers, we naturally want to harness this technology for our own purposes. But many are uncomfortable about dealing with these high-powered batteries, especially when they’ve been salvaged or come from some otherwise questionable origin. Which is precisely what the Smart Multipurpose Battery Tester from [Open Green Energy] is hoping to address.

Continue reading “OSHW Battery Tester Aims To Help Tame Lithium Cells”