Self-Driving Cars And The Fight Over The Necessity Of Lidar

If you haven’t lived underneath a rock for the past decade or so, you will have seen a lot of arguing in the media by prominent figures and their respective fanbases about what the right sensor package is for autonomous vehicles, or ‘self-driving cars’ in popular parlance. As the task here is to effectively replicate what is achieved by the human Mark 1 eyeball and associated processing hardware in the evolutionary layers of patched-together wetware (‘human brain’), it might seem tempting to think that a bunch of modern RGB cameras and a zippy computer system could do the same vision task quite easily.

This is where reality throws a couple of curveballs. Although RGB cameras lack the evolutionary glitches like an inverted image sensor and a big dead spot where the optical nerve punches through said sensor layer, it turns out that the preprocessing performed in the retina, the processing in the visual cortex and analysis in the rest of the brain is really quite good at detecting objects, no doubt helped by millions of years of only those who managed to not get eaten by predators procreating in significant numbers.

Hence the solution of sticking something like a Lidar scanner on a car makes a lot of sense. Not only does this provide advanced details on one’s surroundings, but also isn’t bothered by rain and fog the way an RGB camera is. Having more and better quality information makes subsequent processing easier and more effective, or so it would seem.

Continue reading “Self-Driving Cars And The Fight Over The Necessity Of Lidar”

The Channel Crossing Bridge That Never Was

Full marks for clarity of message. Credit: Euro Route materials

When the Channel Tunnel opened in 1994, the undersea rail link saw Britain grew closer to the European mainland than ever before. However, had things gone a little differently, history might have taken a very different turn. Among the competing proposals for a fixed Channel crossing was a massive bridge. It was a scheme so audacious that fate would never allow it to come to fruition.

Forget the double handling involved in putting cars on trains and doing everything by rail. Instead, the aptly-named Euro Route proposed that motorists simply drive across the Channel, perhaps stopping for duty-free shopping in the middle of the sea along the way.

Continue reading “The Channel Crossing Bridge That Never Was”

Making A Cardboard Airplane Wing

Ideally, an aircraft would be made of something reasonably strong, light, and weather resistant. Cardboard, is none of those things. But that did not stop [PeterSripol] from building an ultralight wing out of cardboard.

Firstly, he wanted to figure out the strongest orientation of the cardboard flutes for the wing spars. He decided on a mix of horizontal and vertical flutes for the wing spar, with the horizontal flutes resisting vertical deformations and the vertical flutes resisting chord wise deformations.

Continue reading “Making A Cardboard Airplane Wing”

Keep An Eye On Your Air-Cooled Engine

There was a time, long ago, when passenger vehicles used to be much simpler than they are today. There were many downsides of this era, safety chief among them, but there were some perks as well. They were in general cheaper to own and maintain, and plenty could be worked on with simple tools. There’s perhaps no easier car to work on than an air-cooled Volkswagen, either, but for all its simplicity there are a number of modern features owners add to help them with these antiques. [Pegor] has created his own custom engine head temperature monitor for these vehicles.

As one could imagine with an air-cooled engine, keeping an eye on the engine temperature is critical to ensuring their longevity but the original designs omitted this feature. There are some off-the-shelf aftermarket solutions but this custom version has a few extra features that others don’t. It’s based on a ATMega32u4 microcontroller and will work with any K-type thermocouple, and thanks to its open nature can use a wide array of displays. [Pegor] chose one to blend in with the rest of the instrumentation on this classic VW. The largest issue that needed to be sorted out was around grounding, but a DC-DC converter created an isolated power supply for the microcontroller, allowing the thermocouple to be bonded to the grounded engine without disrupting operation of the microcontroller.

The finished product looks excellent and does indeed blend in to the dashboard more than the off-the-shelf temperature monitor that was in use before. The only thing that is planned for future versions is a way to automatically dim the display when the headlights are on, as [Pegor] finds it a little bright at night. We also enjoy seeing anything that helps these antiques stay on the road more reliably as their modern descendants don’t have any of the charm or engineering of these classics.

Was The Napier Nomad The Most Complex Aero Engine Ever Made?

From 1945 to 1955, a British aeronautical company called Napier & Son produced not just one but two versions of an intricate hybrid piston engine, which they named the Napier Nomad. The post-World War II era saw the development of several fascinating (and highly complex) piston-powered aeronautical engines alongside the emerging gas turbine engine designs. During this period, gas turbines were inefficient, unreliable, and primarily used for military applications. The (then) British Ministry of Supply commissioned the design and creation of a more fuel-efficient piston engine for aeronautical purposes, both military and civil, aiming to achieve gas turbine-like power while maintaining piston engine efficiency. Quite the challenge!

The specification aimed for 6000 hp and optimal fuel efficiency for long-range use. Napier knew gas turbines were limited by maximum operating temperature, constrained by available materials, which increased fuel consumption and reduced range. Piston engines operated at higher peak temperatures. They considered combining both principles to create a superior design, a concept suggested by aeronautical engineer Sir Harry Ricardo, who had consulted for Napier on other projects. Their complex solution was to build a gas turbine with a two-stroke diesel engine as the combustion chamber, merging the benefits of both.

Continue reading “Was The Napier Nomad The Most Complex Aero Engine Ever Made?”

Keep That Engine Running, With A Gassifier

Every now and then in histories of the 20th’s century’s earlier years, you will see pictures of cars and commercial vehicles equipped with bulky drums, contraptions to make their fuel from waste wood. These are portable gas generators known as gasifiers, and to show how they work there’s [Greenhill Forge] with a build video.

A gasifier on a vintage tractor
A gasifier on a vintage tractor. Per Larssons Museum, CC BY 2.5.

When you burn a piece of wood, you expect to see flame. But what you are looking at in that flame are the gaseous products of the wood breaking down under the heat of combustion. The gasifier carefully regulates a burn to avoid that final flame, with the flammable gasses instead being drawn off for use as fuel.

The chemistry is straightforward enough, with exothermic combustion producing heat, water vapour, and carbon dioxide, before a further endothermic reduction stage produces carbon monoxide and hydrogen. He’s running his system from charcoal which is close to pure carbon presumably to avoid dealing with tar, and at this stage he’s not adding any steam, so we’re a little mystified as to where the hydrogen comes from unless there is enough water vapour in the air.

His retort is fabricated from sheets steel, and is followed by a cyclone and a filter drum to remove particulates from the gas. It relies on a forced air draft from a fan or a small internal combustion engine, and we’re surprised both how quickly it ignites and how relatively low a temperature the output gas settles at. The engine runs with a surprisingly simple gas mixer in place of a carburetor, and seems to be quite smooth in operation.

This is one of those devices that has fascinated us for a long time, and we’re grateful for the chance to see it up close. The video is below the break, and we’re promised a series of follow-ups as the design is refined.

Continue reading “Keep That Engine Running, With A Gassifier”

PLA Gears Fail To Fail In 3D Printed Bicycle Drivetrain

Anyone who has ever snapped a chain or a crank knows how much torque a bicycle’s power train has to absorb on a daily basis; it’s really more than one might naively expect. For that reason, [Well Done Tips]’s idea of 3D printing a gear chain from PLA  did not seem like the most promising of hacks to us.

Contrary to expectations, though, it actually worked; at the end of the video (at about 13:25), he’s on camera going 20 km/h, which while not speedy, is faster than we thought the fixed gearing would hold up. The gears themselves, as you can see, are simple spurs, and were modeled in Fusion360 using a handy auto-magical gear tool. The idler gears are held in place by a steel bar he welded to the frame, and are rolling on good old-fashioned skateboard bearings–two each. (Steel ones, not 3D printed bearings.) The healthy width of the spur gears probably goes a long way to explaining how this contraption is able to survive the test ride.

The drive gear at the wheel is steel-reinforced by part of the donor bike’s cassette, as [Well Done Tips] recognized that the shallow splines on the freewheel hub were not exactly an ideal fit for PLA. He does complain of a squeaking noise during the test ride, and we can’t help but wonder if switching to helical gears might help with that. That or perhaps a bit of lubricant, as he’s currently riding the gears dry. (Given that he, too, expected them to break the moment his foot hit the pedal, we can’t hardly blame him not wanting to bother with grease.)

We’ve seen studies suggesting PLA might not be the best choice of plastic for this application; if this wasn’t just a fun hack for a YouTube video, we’d expect nylon would be his best bet. Even then, it’d still be a hack, not a reliable form of transportation. Good thing this isn’t reliable-transportation-a-day!

Continue reading “PLA Gears Fail To Fail In 3D Printed Bicycle Drivetrain”