Finally, a brake for your long board

Long Board Takes A Brake

Long boards are awesome. They feel like your surfing on concrete — amazing for hilly areas where you can coast around forever. The weird thing is, none of them come with brakes standard… Even though when you’re going down a hill you can easily hit 30-40mph! [Marius] decided to fix this, so he built his own 3D printed brake system for his Onda long board.

He designed the system in 3Ds Max and 3D printed the parts in PLA using his Printrbot Metal Simple (check out our review here). It uses an off the shelf bicycle brake pad, and brake cable as well as a few elastic bands. Currently only one wheel brakes, but it seems to be enough to slow you down — though he might mirror the system on the other side to obtain more braking power.

The long board he’s using does have slightly larger wheels than normal, but the system could be modified to use on a more standard sized long board.  Stick around after the break to see it in action.

Continue reading “Long Board Takes A Brake”

Walking Contraption Powered by a Drill

Drill Powered Scooter Walks With Legs

[Izzy Swan] is a popular wood working YouTuber who recently fell in love with [Theo Jansen’s] kinetic art — the Strandbeest. Naturally, he had to make his own; but with his own flare of course.

If’ you’re not familiar, [Theo Jansen’s] Strandbeest is a walking kinetic sculpture, powered by wind. It’s inspired a Hamster Ball powered Strandbeest, some nice 3D printed ones, and even a paper craft version! Mechanically, it’s quite a marvel — his TED talk about them is fantastic.

When [Izzy] saw all those legs moving, he knew he had to recreate it — so he came up with this two legged version that pushes him around — kind of like a tricycle, but the back wheels are… legs? It’s an oddity for sure, but an impressive feat nonetheless. Not to mention he’s powering the whole thing using a little cordless drill…

Despite it looking like machined aluminum, it is in fact made of wood, though it does feature a metal gearbox using worm gears to transfer torque from the drill. We want to see a Segway version of this… we might have to make use of the laser cutter in the office…

Continue reading “Drill Powered Scooter Walks With Legs”

Retrotechtacular: The Omega Navigational System

In 1971, the United States Navy launched the Omega navigational system for submarines and surface ships. The system used radio frequencies and phase difference calculations to determine global position. A network of eight (VLF) transmitter sites spread around the globe made up the system, which required the cooperation of six other nations.

Omega’s fix accuracy was somewhere between one and two nautical miles. Her eight transmitter stations were positioned around the Earth such that any single point on the planet could receive a usable signal from at least five stations. All of the transmitters were synchronized to a Cesium clock and emitted signals on a time-shared schedule.

LOP-thumbA ship’s receiving equipment performed navigation by comparing the phase difference between detected signals. This calculation was based around “lanes” that served to divvy up the distance between stations into equal divisions. A grid of these lanes formed by eight stations’ worth of overlapping signals provides intersecting lines of position (LOP) that give the sailor his fix.

In order for the lane numbers to have meaning, the sailor has to dial in his starting lane number in port based on the maps. He would then select the pair of stations nearest him, which were designated with the letters A to H. He would consult the skywave correction tables and make small adjustments for atmospheric conditions and other variances. Finally, he would set his lane number manually and set sail.

Continue reading “Retrotechtacular: The Omega Navigational System”

Intense Brushless DC Stage Brings More E-Bike Power

[ZombieSS] wrote in to share the latest iteration of his new open hardware Brushless DC motor high power output stage posted on the Endless-sphere forums. The thread is a gold mine of useful information on designing, building and debugging high power electronics and the whole thing is worth reading. This includes the story of issues he faced with common mode noise picked up by the probe leads on his Rigol, which sidetracked the project for a while.

ebikeWe’ve covered various ebike hacks before, but the guys at endless sphere appear to be developing a number of solid open hardware designs in this area. This includes the Lebowski controller which [ZombieSS] used in conjunction with his design.

He has installed the controller and output stage on his electric bike, and you can see one of the first test runs in the video below. We look forward to hearing more from the awesome hackers at Endless sphere!

Continue reading “Intense Brushless DC Stage Brings More E-Bike Power”

Castrol Virtual Drift: Hacking Code At 80MPH With A Driver In A VR Helmet

Driving a brand new 670 horsepower Roucsh stage 3 Mustang while wearing virtual reality goggles. Sounds nuts right? That’s exactly what Castrol Oil’s advertising agency came up with though. They didn’t want to just make a commercial though – they wanted to do the real thing. Enter [Adam and Glenn], the engineers who were tasked with getting data from the car into a high end gaming PC. The computer was running a custom simulation under the Unreal Engine. El Toro field provided a vast expanse of empty tarmac to drive the car without worry of hitting any real world obstacles.

The Oculus Rift was never designed to be operated inside a moving vehicle, so it presented a unique challenge for [Adam and Glenn]. Every time the car turned or spun, the Oculus’ on-board Inertial Measurement Unit (IMU) would think driver [Matt Powers] was turning his head. At one point [Matt] was trying to drive while the game engine had him sitting in the passenger seat turned sideways. The solution was to install a 9 degree of freedom IMU in the car, then subtract the movements of that IMU from the one in the Rift.

GPS data came from a Real Time Kinematic (RTK) GPS unit. Unfortunately, the GPS had a 5Hz update rate – not nearly fast enough for a car moving close to 100 MPH. The GPS was relegated to aligning the virtual and real worlds at the start of the simulation. The rest of the data came from the IMUs and the car’s own CAN bus. [Adam and Glenn] used an Arduino with a Microchip mcp2515 can bus interface  to read values such as steering angle, throttle position, brake pressure, and wheel spin. The data was then passed on to the Unreal engine. The Arduino code is up on Github, though the team had to sanitize some of Ford’s proprietary CAN message data to avoid a lawsuit. It’s worth noting that [Adam and Glenn] didn’t have any support from Ford on this, they just sniffed the CAN network to determine each message ID.

The final video has the Hollywood treatment. “In game” footage has been replaced with pre-rendered sequences, which look so good we’d think the whole thing was fake, that is if we didn’t know better.

Click past the break for the final commercial and some behind the scenes footage.

Continue reading “Castrol Virtual Drift: Hacking Code At 80MPH With A Driver In A VR Helmet”

A Real Dash For A Truck Simulator

[Leon] plays Euro Truck Simulator 2, and like any good simulator, there are people out there building consoles, cockpits, and dashboards. In [Leon]’s case, he wanted a dashboard for his virtual trucks and cobbled one together out of a dash taken from a VW Polo.

This project was inspired by [Silas Parker] and his Arduino-based dashboard made out of a cardboard box, some servos, and a few LEDs. It worked, but [Leon] realized just about every dashboard made in the last decade or so has a CAN bus. You can just buy a CAN bus shield for an Arduino, and a dashboard can be easily found at any junkyard.

Right now, [Leon] is in the process of finding the CAN bus addresses of the relavent dials and LEDs on the dashboard. He found the tachometer at 0x280, and a bunch of indicator lights can be found at 0x470. Combined with a standard computer steering wheel and the telemetry SDK for Euro Truck Simulator 2, [Leon] has the beginnings of a virtual big rig on his desk.

Hanging Onto The World’s Greatest Piggyback Ride.

We were really sad to see NASA retire the Space Shuttle. Even though it’s being replaced with some new and exciting hardware, we have fond memories of the Shuttle program. The good news is that a lot of the old hardware can now be seen up close and personal. [Brady Haran] recently took a video tour of one of the iconic pieces of hardware from the Shuttle program, the Shuttle Carrier N905NA.

NASA purchased the Boeing 747-100 in 1974 from American Airlines, and by 1976 the jumbo jet was put on a strict diet in preparations to carry the shuttle on it’s back for transportation and initial testing. She was stripped of her interior (all but few first class seats), sound deadening, air conditioning, and baggage compartment. Vertical fins on the tail were added for yaw stability, and the four Pratt and Whitney turbofans were upgraded to more powerful units. The fuselage was strengthened, and mounting points for the shuttle added. Even with all the weight savings, it severely limited the 747’s range from about 5000 miles to about 1000 miles while the orbiter was on it’s back. The aircraft was retired from service after ferrying the Shuttles to their final destinations in 2012.

In the video after the break, you can take a short tour of the N905NA at the Johnson Space Center in Houston where they are preparing it for public display. Visitors will be able to tour the 747 (with exhibits inside the fuselage), and a very accurate mock-up of the shuttle that sits atop.
Continue reading “Hanging Onto The World’s Greatest Piggyback Ride.”