Motorcycle Rally Computer Goes Open Source

Motorcycle rally racing is a high-speed, exciting, off-road motorsport that involves zipping across all types of terrain on two wheels. While riding, it’s extremely important for riders to know what’s coming up next —  turns, straightaways, stream crossings, the list goes on. Generally, this is handled by a roadbook — a paper scroll that has diagrams of each turn or course checkpoint, along with the distances between them and any other pertinent information. Of course, this needs to be paired with a readout that tells you how far you’ve traveled since the last waypoint so you’re not just guessing. This readout usually takes the form of a rally computer, a device that can display speed, distance traveled, and course heading (and some of the fancier ones have even more data available).

A roadbook with commercially-available rally computers

Frustrated with the lackluster interface and high cost associated with most rally computers on the market, [Matias Godoy] designed his own back in 2017, and was quick to realize he had a potential product. After several iterations he brought his idea to market with a small initial run, which sold out in a few hours!

He then took some time to reflect on the successful campaign. He decided that rather than continue to churn out units, he would open-source the design to make it available to everybody and see what the community could come up with. He published all of his design files to GitHub, and wrote up a wonderful blog post documenting the entire design process, from inspiration and early prototypes to his decision to go open source.

[Matias]’s project, the Open Rally Computer (formerly the Baja Pro) packages neatly in a CNC-machined case and features a nice high-visibility LCD display, a built-in GPS receiver, and an ergonomic handlebar-mounted remote. The data is crunched by an ESP32 microcontroller, which also allows for WiFi-enabled OTA updates. The end result is a beautiful and useful device that was clearly designed with great care. Love the idea but not a rally racer? If street bikes are more your thing then fear not because there’s an open source digital dashboard out there for you too.

Turn signal monitor

Annoy Yourself Into Better Driving With This Turn Signal Monitor

Something like 99% of the people on the road at any given moment will consider themselves an above-average driver, something that’s as statistically impossible as it is easily disproven by casual observation. Drivers make all kinds of mistakes, but perhaps none as annoying and avoidable as failure to use their turn signal. This turn signal monitor aims to fix that, through the judicious use of negative feedback.

Apparently, [Mark Radinovic] feels that he has a predisposition against using his turn signal due to the fact that he drives a BMW. To break him of that habit, one that cost him his first BMW, he attached Arduino Nano 33 BLEs to the steering wheel and the turn signal stalk. The IMUs sense the position of each and send that over Bluetooth to an Arduino Uno WiFi. That in turn talks over USB to a Raspberry Pi, which connects to the car’s stereo via Bluetooth to blare an alarm when the steering wheel is turned but the turn signal remains untouched. The video below shows it in use; while it clearly works, there are a lot of situations where it triggers even though a turn signal isn’t really called for — going around a roundabout, for example, or navigating a sinuous approach to a drive-through window.

While [Mark] clearly built this tongue firmly planted in cheek, we can’t help but think there’s a better way — sniffing the car’s CANbus to determine steering angle and turn signal status comes to mind. This great workshop on CANbus sniffing from last year’s Remoticon would be a great place to start if you’d like a more streamlined solution than [Mark]’s.

Continue reading “Annoy Yourself Into Better Driving With This Turn Signal Monitor”

Modified Car Alternator Powers Speedy DIY E-Bike

Your garden variety automotive alternator is ripe for repurposing as is, but with a little modification, it can actually be used as a surprisingly powerful brushless motor. Looking to demonstrate the capabilities of one of these rebuilt alternators, [DIY King] bolted one to the back of a old bicycle and got some impressive, and frankly a bit terrifying, results.

We should say up front that the required modifications to the alternator are quite extensive, so before you get too excited about building your own budget e-bike, you should check out the previous guide [DIY King] put together. The short version is that you’ll need to machine a new rotor and fill it with the neodymium magnets salvaged from hoverboard motors.

A custom built alternator rotor is the key to the project.

Once you’ve got your modified alternator, the rest is relatively easy. The trickiest part of this build looks like it was cutting off the bike’s rear wheel mount and replacing it with a plate that holds the alternator and a pair of reduction gears pulled from a 125cc motorbike. Beyond that, it’s largely electronics.

Naturally, you’ll also need a pretty beefy speed controller. In this case [DIY King] is using a 200 amp water-cooled model intended for large RC boats, though interestingly enough, it doesn’t seem he’s actually running any water through the thing. He’s also put together a custom 1,500 watt-hour battery pack that lives in a MDF box mounted under the seat.

To test out his handiwork, [DIY King] took to the streets and was able to get the bike up to 70 km/h (43 MPH) before his courage ran out. He thinks the motor should be able to push it up to 85 km/h, but he says the bike started wobbling around too much for him to really open it up. In terms of range, he calculated that while cruising around at a more palatable 30 km/h (18 MPH), he should be able to get 100 kilometers (62 miles) off of a single charge.

If you like repurposed motors and suicidal bike speeds, you’ll love this build that uses a washing machine motor to push a rider to a claimed 110 km/h. If you’re not worried about speed or range, then this supercapacitor e-bike is certainly worth a look as well.

Continue reading “Modified Car Alternator Powers Speedy DIY E-Bike”

Fail Of The Week: Alternator Powered Electric Go-Kart Doesn’t Go

What do you give a six-year-old who loves going fast but doesn’t like loud noises? Convert a gas go-kart to electric of course! (Video, embedded below.) That goal started [Robert Dunn] of Aging Wheels down a long path toward a go-kart that almost, but doesn’t quite… work.

If you’ve watched any of [Robert’s] videos, you know he doesn’t take the easy path. The man owns a Trabant and Reliant Robin after all. Rather than buy a battery pack, he built his own 5S24P pack from individual LiFePO4 cells. Those cells generally are spot welded, so [Robert] built an Arduino-controlled heirloom-quality spot welder. Now while the welder could handle thin nickel strips, it wasn’t up the task of welding high current nickel-plated copper. When attempts at a solution failed, [Robert] built a system of clamped copper bus bars to handle the high current connections for the batteries.

If batteries weren’t hard enough, [Robert] also decided he wasn’t going to use an off-the-shelf motor for this project. He converted a car alternator to operate as a brushless motor. We’ve covered projects using this sort of conversion before. Our own [Jenny List] even wrote a tutorial on it. [Robert] unfortunately has had no end of trouble with his build.

Continue reading “Fail Of The Week: Alternator Powered Electric Go-Kart Doesn’t Go”

British Licence Plate Camera Fooled By Clothing

It’s a story that has caused consternation and mirth in equal measure amongst Brits, that the owners of a car in Surrey received a fine for driving in a bus lane miles away in Bath, when in fact the camera had been confused by the text on a sweater worn by a pedestrian. It seems the word “knitter” had been interpreted by the reader as “KN19 TER”, which as Brits will tell you follows the standard format for modern UK licence plate.

It gives us all a chance to have a good old laugh at the expense of the UK traffic authorities, but it raises some worthwhile points about the fallacy of relying on automatic cameras to dish out fines without human intervention. Except for the very oldest of cars, the British number plate follows an extremely distinctive high-contrast format of large black letters on a reflective white or yellow background, and since 2001 they have all had to use the same slightly authoritarian-named MANDATORY typeface. They are hardly the most challenging prospect for a number plate recognition system, but even when it makes mistakes the fact that ambiguous results aren’t subjected to a human checking stage before a fine is sent out seems rather chilling.

It also raise the prospect of yet more number-plate-related mischief, aside from SQL injection jokes and adversarial fashion, we can only imagine the havoc that could be caused were a protest group to launch a denial of service attack with activists sporting fake MANDATORY licence plates.

Header image, based on the work of ZElsb, CC BY-SA 4.0.

IBM Attempts An Uncrewed Atlantic Crossing (Again)

IBM and a non-profit company, ProMare, failed to send their 49-foot Mayflower autonomous ship across the Atlantic back in June. Now they are almost ready to try again. The Mayflower will recreate the path of its more famous namesake.

The total voyage is set to take a month, but the last attempt developed mechanical problems after three days. Now they are running more sea trials closer to shore before attempting another crossing in 2022. Continue reading “IBM Attempts An Uncrewed Atlantic Crossing (Again)”

Automate The Freight: Autonomous Ships Look For Their Niche

It is by no means an overstatement to say that life as we know it would grind to a halt without cargo ships. If any doubt remained about that fact, the last year and a half of supply chain woes put that to bed; we all now know just how much of the stuff we need — and sadly, a lot of the stuff we don’t need but still think we do — comes to us by way of one or more ocean crossings, on vessels specialized to carry everything from shipping containers to bulk liquid and solid cargo.

While the large and complex vessels that form the backbone of these globe-spanning supply chains are marvelous engineering achievements, they’re still utterly dependent on their crews to make them run efficiently. So it’s not at all surprising to learn that some shipping lines are working on ways to completely automate their cargo ships, to reduce their exposure to the need for human labor. On paper, it seems like a great idea — unless you’re a seafarer, of course. But is it a realistic scenario? Will shipping companies realize the savings that they apparently hope for by having fleets of unmanned cargo vessels plying the world’s oceans? Is this the right way to automate the freight?

Continue reading “Automate The Freight: Autonomous Ships Look For Their Niche”