Stinger: The Hacked Machine Gun Of Iwo Jima

During the Second World War, the United States was pumping out weapons, aircraft, and tanks at an absolutely astonishing rate. The production of military vehicles and equipment was industrialized like never before, and with luck, never will be again. But even still, soldiers overseas would occasionally find themselves in unique situations that required hardware that the factories back at home couldn’t provide them with.

A Stinger machine gun in WWII

Which is precisely how a few United States Marines designed and built the “Stinger” light machine gun (LMG) during the lead-up to the invasion of Iwo Jima in 1945. The Stinger was a Browning .30 caliber AN/M2, salvaged from a crashed or otherwise inoperable aircraft, that was modified for use by infantry. It was somewhat ungainly, and as it was designed to be cooled by the air flowing past it while in flight, had a tendency to overheat quickly. But even with those shortcomings it was an absolutely devastating weapon; with a rate of fire at least twice that of the standard Browning machine guns the Marines had access to at the time.

Six Stingers were produced, and at least on a Battalion level, were officially approved for use in combat. After seeing how successful the weapon was during the invasion of Iwo Jima, there was even some talk of putting the Stinger into larger scale production and distributing them. But the war ended before such a plan could be put into place.

As such, the Stinger is an exceedingly rare example of a field modified weapon that was not only produced in significant numbers, but officially recognized and even considered for adoption by the military. But the story of this hacked machine gun actually started years earlier and thousands of kilometers away, as Allied forces battled for control of the Solomon Islands.

Continue reading “Stinger: The Hacked Machine Gun Of Iwo Jima”

This Crossbow Fires Cannonballs!

The would-be invader of a mediaeval kingdom could expect to face some stern opposition from a variety of formidable weaponry. Making modern versions of these deadly curiosities seems to be a popular pursuit, and the bug has bitten [Turbo Conquering Mega Eagle], who’s created what he calls a “Stonebow”, a crossbow on steroids that fires stones or large ball bearings with considerable force.

It uses a couple of leaves from automotive springs, mounted in a welded steel riser with two strings and a pouch for the projectile. The barrel is an oak fencing post, and at its other end is a cocking lever which also forms a stock, and a cleverly designed trigger mechanism. The projectile is loaded, the bow is cocked, and it is fired at a scrap Land Rover radiator in which it places a satisfying impact mark.

Despite two successful firings it’s evident that so much force isn’t easy to contain. The crimps that secure the strings aren’t up to the job, and neither is the oak fence post, which has cracked at the end. We trust that our Essex hacker friend will return having fixed these flaws, and more defenceless scrap car parts will be sacrificed for our entertainment.

We’ve featured [Turbo Conquering Mega Eagle] before, most recently building a mini-bike for his youngsters. Meanwhile, enjoy the Stonebow in the video below the break.

Continue reading “This Crossbow Fires Cannonballs!”

Bullet-proofing Your Car With An Affordable Composite Armor

Remember those actions movies like The Fast and the Furious where cars are constantly getting smashed by fast flying bullets? What would it have taken to protect the vehicles from AK-47s? In [PrepTech]’s three-part DIY composite vehicle armor tutorial, he shows how he was able to make his own bulletproof armor from scratch. Even if you think the whole complete-collapse-of-civilization thing is a little far-fetched, you’ve got to admit that’s pretty cool.

The first part deals with actually building the composite. He uses layers of stainless steel, ceramic mosaic tiles, and fiberglass, as well as epoxy resin in order to build the composite. The resin was chosen for its high three-dimensional cross-linked density, while the fiberglass happened to be the most affordable composite fabric. Given the nature of the tiny shards produced from cutting fiberglass, extreme care must be taken so that the shards don’t end up in your clothes or face afterwards. Wearing a respirator and gloves, as well as a protective outer layer, can help.

After laminating the fabric, it hardens to the point where individual strands become stiff. The next layer – the hard ceramic – works to deform and slow down projectiles, causing it to lose around 40% of its kinetic energy upon impact. He pipes silicone between the tiles to increase the flexibility. Rather than using one large tile, which can only stand one impact, [PrepTech] uses a mosaic of tiles, allowing multiple tiles to be hit without affecting the integrity of surrounding tiles. While industrial armor uses boron or silicon carbide, ceramic is significantly lower cost.

The stainless steel is sourced from a scrap junkyard and cut to fit the dimensions of the other tiles before being epoxied to the rest of the composite. The final result is allowed to sit for a week to allow the epoxy to fully harden before being subject to ballistics tests. The plate was penetrated by a survived shots from a Glock, Škorpion vz. 61, and AK-47, but was penetrated by the Dragunov sniper rifle. Increasing the depth of the stainless steel to at least a centimeter of ballistic grade steel may have helped protect the plate from higher calibers, but [PrepTech] explained that he wasn’t able to obtain the material in his country.

Nevertheless, the lower calibers were still unable to puncture even the steel, so unless you plan on testing out the plate on high caliber weapons, it’s certainly a success for low-cost defense tools.

Continue reading “Bullet-proofing Your Car With An Affordable Composite Armor”

Catapult Your Best Wishes With This 3D-Printable Card

It’s the season to be surrounded by greeting cards of all shapes and sizes from friends old and new. News of their families and achievements, reminders that they exist, and a pile of cards to deal with sometime in January. Wouldn’t it be great if you could send something with a little more substance, something your friends would remember, maybe even hang on to?

[Brian Brocken]’s 3D-printed Da Vinci catapult kit may not fill that niche for everyone, but we can guarantee it will be a talking point. The Da Vinci catapult design uses a pair of springs similar to an archer’s bow, to unwind a pair of ropes and thus turn the shaft upon which the catapult shaft itself is fitted. All these components are mounted in a single piece with sprues similar to an injection moulded model kit, allowing the whole to easily be posted in an envelope.

The parts are all available to print separately among the files on the Thingiverse page for those with no need to mail them. For the casual spectator he’s made a YouTube video that we’ve placed below the break, detailing the design and build process as well as showing the device in use.

Continue reading “Catapult Your Best Wishes With This 3D-Printable Card”

How Ammo Temperature Will Affect Shooting Accuracy

The last time we visited the Hackaday shooting range we were all psyched up to get the right posture, breathe correctly, lower our heart rates and squeeze the trigger at exactly the right moment that the wandering cross hairs align with the target ……. and lastly accommodate the inevitable recoil. But never did we think to check the temperature of our ammo! Ok, temperatures aren’t likely to vary that much there unless the range cat chooses to lay down on top of the ammo box, but out in the wilderness the temperatures can easily vary by up to 30 degrees, which would certainly be a problem.

If we take a quick look at what’s happening on Johnny’s Reloading Bench  we get an in depth comparison of different powders at different temperatures, with data being collected via a bullet velocity radar. If nothing else, it’s interesting just to get a peep into the mysterious world of ‘Reloading’ where every one of the tiny kernels or ‘balls’ of powder make a difference and different powders require particular primers to make them burn properly.

Just to make it clear, bullet speed makes a big difference to the trajectory, especially at long distances. For example, if the bullet were to travel at close to the speed of light, there would be almost no trajectory at all and the shooter would not have to adjust the vertical aim for distance. Normally, we have to aim upwards to hit the target:

It may be that we ‘zero in’ our sights at room temperature, but then end up actually shooting the firearm on a cold, frosty morning with cold ammo, and given what we have now learnt from the video, we could now make a small adjustment for that eventuality, depending on the particular ammo we are using. Johnny’s video is after the break:

Continue reading “How Ammo Temperature Will Affect Shooting Accuracy”

Making A Bronze Cannon From Scratch

Casting metal at home is somewhat tricky, but there’s no denying the results can be quite rewarding. [FarmCraft101] put his incredible craftsmanship on display, and learned a few new things in the process, by scratch building a scale replica bronze cannon and carriage.

Starting with a sufficient quantity of scrap metal, he first produced bronze ingots. Getting the actual casting right took multiples attempts. First tried a lost foam cast, which failed miserably, but provided a sample metal which was put through tensile strength testing. The second attempt was done using a wood barrel form and a split mold, and was cast horizontally which resulted in shrinkage on top of the barrel. The third attempt, arranged vertically, almost resulted in a high risk game of “the floor is lava”, with molten bronze pouring out across his garage floor after the mold split open during casting.

Attempt number four was finally successful, again using a vertical mold but with more sturdy clamping. This roughcast barrel was then drilled out and finished to a beautiful mirror with the help of a lathe and a lot of elbow grease. He then turned his attention to the carriage, which itself is a real beauty featuring custom wagon wheels with a charred wood finish and linseed oil coating.

You can check out the build video after the break, but we’ll warn you now, [FarmCraft101] never actually fires this gorgeous creation. If you’d like to try your hand at DIY cannoneering and have a 3D printer, you might want to give lost PLA casting a try, or go into mass production with some DIY silicone molds.

Continue reading “Making A Bronze Cannon From Scratch”

3D Printing Is Transformative Experience For Airgun Shooter

It’s interesting to peek into other scenes and niches and see how they intersect with things that one may find commonplace, like 3D printing. In this case, [NewToOldGuns] wrote a guest blog post for PyramydAir (a retailer, so be prepared for a lot of product links) about how 3D printing has completely transformed the experience of how he uses one of his favorite airguns, and allowed him to make changes and improvements that would not otherwise have been practical.

Not only are the 3D printed improvements thoughtful and useful, but it’s interesting to see familiar insights into the whole design process. After explaining some 3D printing basics, he points out that rapid iteration is key to effective prototyping, and a 3D printer can allow that to happen in a way not previously possible.

The pellets held inside the silver cylinder can no longer fall out, and the orange holder allows it to be simply pushed straight through into the gun’s receiver.

It all started with the small magazine which holds the rifle’s projectiles. It would be really handy to pre-load these for easier reloading, but there were practical problems preventing this. For one thing, there’s nothing to really hold the pellets in place and keep them from just falling out when it’s not loaded into the gun. Also, loading them into the gun without letting anything fall out was awkward at best. The solution was to design a simple holder that would cradle the magazine and cover the front and back to keep everything in place. [NewToOldGuns] also designed it so that it could mate directly to the gun, so the magazine could simply be pushed straight into the receiver while the action was held open.

Once this simple part was working, the floodgates of creativity were opened. Next was a belt attachment to hold multiple reloads, followed by a decision to mount the reloads directly onto the gun instead. An improved lever and sights quickly followed.

I also demonstrated the iterative approach to prototyping when I designed a simple alarm to detect when my 3D printer’s filament had run out. [NewToOldGuns] observes that the real power of 3D printing isn’t being able to make bottle openers or coat hooks on demand. It’s the ability to imagine a solution, then have that solution in hand in record time.