X-37B Spaceplane To Test Power Beaming Technology

Since 2010, the United States military has been operating a pair of small reusable spaceplanes that conduct secretive long-duration flights in low Earth orbit. Now officially operating under the auspices of the newly formed Space Force, the X-37Bs allow the military to conduct in-house research on new hardware and technology with limited involvement from outside agencies. The spaceplane still needs to hitch a ride to space on a commercial rocket like the Atlas V or the Falcon 9, but once it’s separated from the booster, the remainder of the X-37B’s mission is a military affair.

An X-37B being prepared for launch.

So naturally, there’s a lot we don’t know about the USSF-7 mission that launched from Cape Canaveral Air Force Station on May 17th. The duration of the mission and a complete manifest of the experiments aboard are classified, so nobody outside the Department of Defense truly knows what the robotic spacecraft is up to. But from previous missions we know the craft will likely remain in orbit for a minimum of two years, and there’s enough public information to piece together at least some of the investigations it will be conducting.

Certainly one the most interesting among them is an experiment from the U.S. Naval Research Laboratory (NRL) that will study converting solar power into a narrow microwave beam; a concept that has long been considered the key to unlocking the nearly unlimited energy potential offered by an orbital solar array. Even on a smaller scale, a safe and reliable way to transmit power over the air would have many possible applications. For example it could be used to keep unmanned aerial vehicles airborne indefinitely, or provide additional power for electric aircraft as they take-off.

Performing an orbital test of this technology is a serious commitment, and shows that all involved parties must have a fairly high confidence level in the hardware. Unfortunately, there isn’t much public information available about the power beaming experiment currently aboard the X-37B. There’s not even an indication of when it will be performed, much less when we should expect to see any kind of report on how it went. But we can make some educated guesses based on the work that the Naval Research Laboratory has already done in this field.

Continue reading “X-37B Spaceplane To Test Power Beaming Technology”

Plasma “Ghosts” May Help Keep Future Aircraft Safe

Air-to-air combat or “dogfighting” was once a very personal affair. Pilots of the First and Second World War had to get so close to land a hit with their guns that it wasn’t uncommon for altercations to end in a mid-air collision. But by the 1960s, guided missile technology had advanced to the point that a fighter could lock onto an enemy aircraft and fire before the target even came into visual range. The skill and experience of a pilot was no longer enough to guarantee the outcome of an engagement, and a new arms race was born.

An F-15 launching flare countermeasures.

Naturally, the move to guided weapons triggered the development of defensive countermeasures that could confuse them. If the missile is guided by radar, the target aircraft can eject a cloud of metallic strips known as chaff to overwhelm its targeting system. Heat-seeking missiles can be thrown off with a flare that burns hotter than the aircraft’s engine exhaust. Both techniques are simple, reliable, and have remained effective after more than a half-century of guided missile development.

But they aren’t perfect. The biggest problem is that both chaff and flares are a finite resource: once the aircraft has expended its stock, it’s left defenseless. They also only work for a limited amount of time, which makes timing their deployment absolutely critical. Automated dispensers can help ensure that the countermeasures are used as efficiently as possible, but sustained enemy fire could still deplete the aircraft’s defensive systems if given enough time.

In an effort to develop the ultimate in defensive countermeasures, the United States Navy has been working on a system that can project decoy aircraft in mid-air. Referred to as “Ghosts” in the recently published patent, several of these phantom aircraft could be generated for as long as the system has electrical power. History tells us that the proliferation of this technology will inevitably lead to the development of an even more sensitive guided missile, but in the meantime, it could give American aircraft a considerable advantage in any potential air-to-air engagements.

Continue reading “Plasma “Ghosts” May Help Keep Future Aircraft Safe”

The Mark 14 Torpedo — When Just About Everything Goes Wrong, Even The Testing

I am a fan of the saying that those who don’t know history are doomed to repeat it. After all, humans have been building things for a number of centuries and we should learn from the engineers of the past. While you can learn a lot studying successes, sometimes — maybe even most of the time — we learn more from studying failure. The US Navy’s Mark 14 torpedo certainly has a lot to teach us.

The start of the story was the WWI-era Mark 10 torpedo which was fine for its day, but with faster destroyers and some additional data about how to best sink enemy ships it seemed necessary to build a new torpedo that would be faster, carry more explosive charge, and use a new method of detonation. Work started in 1931 with a $143,000 budget which may sound laughable today, but that was a lot of coin in the 1930s. Adjusted for inflation, that’s about $2.5 million.

Continue reading “The Mark 14 Torpedo — When Just About Everything Goes Wrong, Even The Testing”

Human-Powered Laser Gun Makes Battery-Free Target Practice

[Dirk] shared a fascinating project of his that consists of several different parts coming together in a satisfying whole. It’s all about wanting to do target practice, indoors, using a simple red laser dot instead of any sort of projectile. While it’s possible to practice by flashing a red laser pointer and watching where it lands on a paper target, it’s much more rewarding (and objective) to record the hits in some way. This is what led [Dirk] to create human-powered, battery-free laser guns with software to track and display hits. In the image above, red laser hits on the target are detected and displayed on the screen by the shooter.

Right under the thumb is the pivot point for the lever, and that’s also where a geared stepper motor (used as a generator) is housed. Operating the action cranks the motor.

There are several parts to this project and, sadly, the details are a bit incomplete and somewhat scattered around, so we’ll go through the elements one at a time. The first is the guns themselves, and the star of the show is his 3D printed cowboy rifle design. The rifle paints the target with a momentary red laser dot when the trigger is pressed, but that’s not all. [Dirk] appears to have embedded a stepper motor into the lever action, so that working the lever cranks the motor as a generator and stores the small amount of power in a capacitor. Upon pulling the trigger, the capacitor is dumped into the laser (and into a piezo buzzer for a bit of an audio cue, apparently) with just enough juice to create a momentary flash. We wish [Dirk] had provided more details about this part of his build. There are a few more images here, but if you’d like to replicate [Dirk]’s work it looks like you’ll be on your own to some extent.

As for the target end of things, blipping a red dot onto a paper target and using one’s own eyeballs can do the job in a bare minimum sort of way, but [Dirk] went one further. He used Python and OpenCV with a camera to watch for the red dot, capture it, then push an image of the target (with a mark where the impact was detected) to a Chromecast-enabled screen near the shooter. This offers much better feedback and allows for easier scoring. The GitHub repository for the shot detector and target caster is here, and while it could be used on its own to detect any old laser pointer, it really sings when combined with the 3D printed cowboy rifle that doesn’t need batteries.

Not using projectiles in target practice does have some benefits: it’s silent, it’s easy to do safely, there is no need for a backstop, there are no consumables or cleaning, and there is no need to change or patch targets once they get too many holes. Watch it all in action in the video embedded below.

Continue reading “Human-Powered Laser Gun Makes Battery-Free Target Practice”

A DIY Stun Gun You Probably Shouldn’t Build

In these troubled times, when a trip to the grocery store could turn into a brawl over toilet paper, you might be inclined to build yourself a low-cost electroshock weapon. Or at least, that’s what [Alex Zidros] did. We don’t necessarily recommend you follow in his footsteps, and we’re certainly not advocating testing it on a loved one. We just bring you this information, you have to decide what you do with it.

This is what peer pressure looks like.

So what does it take to build an improvised stun gun? Not a whole lot, it turns out. As you might have guessed, the star of the show is a high voltage transformer which supposedly puts out 400 kV. Just looking at it (and the price) we’re going to go out on a limb and say the performance specs are way overrated, but in this case that might actually be a good thing.

Beyond the transformer, there’s a simple 9 V battery holder and electrodes made from the prongs of a hacked up travel adapter. To deliver the lightning, [Alex] is using a pink arcade button. Just because you might be fighting for your life doesn’t mean you can’t have a little fun, right? Everything is packed into a simple 3D printed enclosure, but you could easily replace that with any suitably sized box. Something made out of wood might be a good idea, considering.

If you’d like to see another person shocked by a cobbled together high-voltage weapon, and potentially even learn something in the process, check out the “tutorial” video [Mehdi Sadaghdar] did back in 2014. We did mention you definitely shouldn’t do this at home, right?

Vanquish Your Foes With Lego Playing Card Machine Gun

There was something exceptionally satisfying about those playground games of cops and robbers when we were young, but they were missing something in that a pretend gun made with your fingers lacks a certain Je ne sais quoi. Our youthful blood-lust demanded something a bit more real, and though the likes of NERF and other toys could supply it their lost projectiles came at a price not all parents could sustain. We’d have given anything for [Brick Experiment Channel]’s rapid-firing Lego playing card gun! (Video, embedded below.)

The principle is simple enough, one of the larger Lego road wheels is spun up to a respectable speed through a gear train from a pair of motors, it’s positioned over a channel through which playing cards are fed, and it picks each one up and accelerates it to a claimed 20 miles per hour. The card is fired off into the distance, ready to take down your Lego figure or plastic drinking cup enemies with maximum prejudice.

It’s clear some significant thought has gone into the firing platform design, with the cards sliding along smooth rails and the wheel sitting in a gap between the rails so that the natural springiness of the card can engage with it. The cards also emerge with a spin, due to the wheel being offset. The mechanism is completed with a third motor which acts as a feeder pushing individual cards from the deck into the main firing platform. This achieves an astonishing six cards per second, as can be seen in the video below the break.

We can see that this is a huge amount of fun, and we hope should any youngsters get their hands on it that there are not lurid tales of kids with playing card injuries. It’s not the first novelty projectile gun we’ve brought you, there have been numerous rubber band guns but our favourite is the automatic paper plane folder and launcher.

Continue reading “Vanquish Your Foes With Lego Playing Card Machine Gun”

US Navy Looking To Retire Futuristic Prototype Ships

From the Age of Sail through to the Second World War, naval combat was done primarily in close quarters and with cannons. Naturally the technology improved quite a bit in those intervening centuries, but the idea was more or less the same: the ship with the most guns and most armor was usually the one that emerged victorious. Over the years warships became larger and heavier, a trend that culminated in the 1940s with the massive Bismarck, Iowa, and Yamato class battleships.

But by the close of WWII, the nature of naval combat had begun to change. Airplanes and submarines, vastly improved over their WWI counterparts, presented threats from above and below. A few years later, the advent of practical long-range guided missiles meant that adversaries no longer had to be within visual range to launch their attack. Going into the Cold War it became clear that to remain relevant, warships of the future would need to be smaller, faster, and smarter.

The aft flight deck of a modular LCS

It was this line of thinking that lead the US Navy to embark on the Littoral Combat Ship (LCS) program in the early 2000s. These ships would be more nimble than older warships, able to quickly dash through shallow coastal waters where adversaries couldn’t follow. Their primary armament would consist of guided missiles, with fast firing small-caliber guns being relegated to defensive duty. But most importantly, the core goal of the LCS program was to produce a modular warship.

Rather than being built for a single task, the LCS would be able to perform multiple roles thanks to so-called “mission modules” which could be quickly swapped out as needed. Instead of having to return to home port for a lengthy refit, an LCS could be reconfigured for various tasks at a commercial port closer to the combat area in a matter of hours.

A fleet of ships that could be switched between combat roles based on demand promised to make for a more dynamic Navy. If the changing geopolitical climate meant they needed more electronic reconnaissance vessels and fewer minesweepers, the Navy wouldn’t have to wait the better part of a decade to reshuffle their assets; the changeover could happen in a matter of weeks.

Unfortunately, the Littoral Combat Ships have been plagued with technical problems. Citing the expensive refits that would be required to keep them operational, the Navy is now looking at retiring the first four ships in the fleet, the newest of which is just six years old.

Continue reading “US Navy Looking To Retire Futuristic Prototype Ships”