Supercon 2024: How To Track Down Radio Transmissions

You turn the dial on your radio, and hear a powerful source of interference crackle in over the baseline noise. You’re interested as to where it might be coming from. You’re receiving it well, and the signal strength is strong, but is that because it’s close or just particularly powerful? What could it be? How would you even go about tracking it down?

When it comes to hunting down radio transmissions, Justin McAllister and Nick Foster have a great deal of experience in this regard. They came down to the 2024 Hackaday Superconference to show us how it’s done.

Continue reading “Supercon 2024: How To Track Down Radio Transmissions”

Intercepting And Decoding Bluetooth Low Energy Data For Victron Devices

[ChrisJ7903] has created two Ardiuno programs for reading Victron solar controller telemetry data advertised via BLE. If you’re interested in what it takes to use an ESP32 to sniff Bluetooth Low Energy (BLE) transmissions, this is a master class.

The code is split into two main programs. One program is for the Victron battery monitor and the other is for any Victron solar controller. The software will receive, dissect, decrypt, decode, and report the data periodically broadcast from the devices over BLE.

The BLE data is transmitted in Link-Layer Protocol Data Units (PDUs) which are colloquially called “packets”. In this particular case the BLE functionality for advertising, also known as broadcasting, is used which means the overhead of establishing connections can be avoided thereby saving power.

Continue reading “Intercepting And Decoding Bluetooth Low Energy Data For Victron Devices”

Screen shot of Mongoose Wizard.

How To Build An STM32 Web Dashboard Using The Mongoose Wizard

Today from the team at Cesanta Software — the people who gave us the open-source Mongoose Web Server Library and Mongoose OS — we have an article covering how to build an STM32 web dashboard.

The article runs through setting up a development environment; creating the dashboard layout; implementing the dashboard, devices settings, and firmware update pages; building and testing the firmware; attaching UI controls to the hardware; and conclusion.

The web dashboard is all well and good, but in our opinion the killer feature remains the Over-The-Air (OTA) update facility which allows for authenticated wireless firmware updates via the web dashboard. The rest is just gravy. In the video you get to see how to use your development tools to create a firmware file suitable for OTA update.

Continue reading “How To Build An STM32 Web Dashboard Using The Mongoose Wizard”

C64 on desk with NFC TeensyROM and game token

TeensyROM NFC Game Loading On The C64

When retro computing nostalgia meets modern wireless wizardry, you get a near-magical tap-to-load experience. It’ll turn your Commodore 64 into a console-like system, complete with physical game cards. Inspired by TapTo for MiSTer, this latest hack brings NFC magic to real hardware using the TeensyROM. It’s been out there for a while, but it might not have caught your attention as of yet. Developed by [Sensorium] and showcased by YouTuber [StatMat], this project is a tactile, techie love letter to the past.

At the heart of it is the TeensyROM cartridge, which – thanks to some clever firmware modding – now supports reading NFC tags. These are writable NTag215 cards storing the path to game files on the Teensy’s SD card. Tap a tag to the NFC reader, and the TeensyROM boots your game. No need to fumble with LOAD “*”,8,1. That’s not only cool, it’s convenient – especially for retro demo setups.

What truly sets this apart is the reintroduction of physical tokens. Each game lives on its own custom-designed card, styled after PC Engine HuCards or printed with holographic vinyl. It’s a tangible, collectible gimmick that echoes the golden days of floppies and cartridges – but with 2020s tech underneath. Watch it here.

Continue reading “TeensyROM NFC Game Loading On The C64”

As The World Burns, At Least You’ll Have Secure Messaging

There’s a section of our community who concern themselves with the technological aspects of preparing for an uncertain future, and for them a significant proportion of effort goes in to communication. This has always included amateur radio, but in more recent years it has been extended to LoRa. To that end, [Bertrand Selva] has created a LoRa communicator, one which uses a Pi Pico, and delivers secure messaging.

The hardware is a rather-nice looking 3D printed case with a color screen and a USB A port for a keyboard, but perhaps the way it works is more interesting. It takes a one-time pad approach to encryption, using a key the same length as the message. This means that an intercepted message is in effect undecryptable without the key, but we are curious about the keys themselves.

They’re a generated list of keys stored on an SD card with a copy present in each terminal on a particular net of devices, and each key is time-specific to a GPS derived time. Old keys are destroyed, but we’re interested in how the keys are generated as well as how such a system could be made to survive the loss of one of those SD cards. We’re guessing that just as when a Cold War spy had his one-time pad captured, that would mean game over for the security.

So if Meshtastic isn’t quite the thing for you then it’s possible that this could be an alternative. As an aside we’re interested to note that it’s using a 433 MHz LoRa module, revealing the different frequency preferences that exist between enthusiasts in different countries.

Continue reading “As The World Burns, At Least You’ll Have Secure Messaging”

A New, Smarter Universal Remote

The remote for [Dillan Stock]’s TV broke, so he built a remote. Not just as a replacement but as something new. For some of us, there was a glorious time in the early 2000s when a smart remote was needed and there were options you could buy off the shelf. Just one handy button next to the screen had a macro programmed that would turn on the receiver, DVD player, and TV, and then configure it with the right inputs. However, the march of technological convenience has continued and nowadays soundbars turn on just in time and the TV auto switches the input. Many devices are (for better or worse) connected to WiFi, allowing all sorts of automation.

[Dillan] was lucky enough that his devices were connected to his home assistant setup. So this remote is an ESP32 running ESPHome. These automations could be triggered by your phone or via voice assistant. What is more interesting is watching [Dillan] go through the design process. Deciding what buttons there should be, where they should be placed, and how the case would snap together takes real effort. The design uses all through-hole components except for the ESP32 which is a module.

This isn’t the first thing [Dillan] has made with an ESP32, as he previously revamped a non-standard smart lamp with the versatile dev board. The 3d printable files for the remote are free available. Video after the break.

Continue reading “A New, Smarter Universal Remote”

Building An NRF52840 And Battery-Powered Zigbee Gate Sensor

Recently [Glen Akins] reported on Bluesky that the Zigbee-based sensor he had made for his garden’s rear gate was still going strong after a Summer and Winter on the original 2450 lithium coin cell. The construction plans and design for the unit are detailed in a blog post. At the core is the MS88SF2 SoM by Minew, which features a Nordic Semiconductor nRF52840 SoC that provides the Zigbee RF feature as well as the usual MCU shenanigans.

Previously [Glen] had created a similar system that featured buttons to turn the garden lights on or off, as nobody likes stumbling blindly through a dark garden after returning home. Rather than having to fumble around for a button, the system should detect when said rear gate is opened. This would send a notification to [Glen]’s phone as well as activate the garden lights if it’s dark outside.

Although using a reed relay switch seemed like an obvious solution to replace the buttons, holding it closed turned out to require too much power. After looking at a few commercial examples, he settled for a Hall effect sensor solution with the Ti DRV5032FB in a TO-92 package.

Whereas the average person would just have put in a PIR sensor-based solution, this Zigbee solution does come with a lot more smart home creds, and does not require fumbling around with a smartphone or yelling at a voice assistant to turn the garden lights on.