Game Dev On IBook G4 With NetBSD

What can you do with a laptop enough to drink even in the Puritan ex-colonies? 21 years is a long time for computer hardware– but [Chris] is using his early-2004 iBook G4 for game dev thanks to NetBSD.

Some of you might consider game dev a strong word; obviously he’s not working on AAA titles on the machine he affectionately calls “Brick”. NetBSD includes pygame in its repositories, though, and that’s enough for a 2D puzzle game he’s working on called Slantics. It’s on GitHub, if you’re curious.

Slantics: possibly the only game written on PPC Macintosh hardware this year.

Why NetBSD? Well, [Chris] wants to use his vintage hardware so that, in his words “collecting does not become hoarding” and as the slogan goes: “Of course it runs NetBSD!” It’s hard to remember sometimes that it’s been two decades since the last PPC Macintosh. After that long, PPC support in Linux is fading, as you might expect.

[Chris] tried the community-supported PPC32 port of Debian Sid, but the installer didn’t work reliably, and driver issues made running it “Death by a thousand cuts”. NetBSD, with it’s institutional obsession with running on anything and everything, works perfectly on this legally-adult hardware. Even better, [Chris] reports NetBSD running considerably faster, getting 60 FPS in pygame vs 25 FPS under Linux.

This is almost certainly not the year of the BSD Desktop, but if you’ve got an old PPC machine you feel like dusting off to enjoy a low-powered modern workflow, NetBSD may be your AI-code-free jam. It’s great to see old hardware still doing real work. If you’d rather relive the glory days, you can plug that PPC into a wayback proxy to browse like it’s 2005 again. If you get bored of nostalgia, there’s always MorphOS, which still targets PPC.

a Coleco Adams console on a desk

Coleco Adam: A Commodore 64 Competitor, Almost

For a brief, buzzing moment in 1983, the Coleco Adam looked like it might out-64 the Commodore 64. Announced with lots of ambition, this 8-bit marvel promised a complete computing package: a keyboard, digital storage, printer, and all for under $600. An important fact was that it could morph your ColecoVision into a full-fledged CP/M-compatible computer. So far this sounds like a hacker’s dream: modular, upgradeable, and… misunderstood.

The reality was glorious chaos. The Adam used a daisy-wheel printer as a power supply (yes, really), cassettes that demagnetized themselves, and a launch delayed into oblivion. Yet beneath the comedy of errors lurked something quite tempting: a Z80-based system with MSX-like architecture and just enough off-the-shelf parts to make clone fantasies plausible. Developers could have ported MSX software in weeks. Had Coleco shipped stable units on time, the Adam might well have eaten the C64’s lunch – while inspiring a new class of hybrid machines.

Instead, it became a collector’s oddball. But for the rest of us, it is a retro relic that invites us to ponder – or even start building: what if modular computing had gone mainstream in 1983?

FLOSS Weekly Episode 841: Drupal And AI: The Right Tool For Everything

This week Jonathan and Katherine talk with Jamie Abrahams about Drupal, and how AI just makes sense. No, really. Jamie makes a compelling case that Drupal is a really good tool for building AI workflows. We cover security, personal AI, and more!

Continue reading “FLOSS Weekly Episode 841: Drupal And AI: The Right Tool For Everything”

FLOSS Weekly Episode 840: End-of-10; Not Just Some Guy In A Van

This week Jonathan chats with Joseph P. De Veaugh-Geiss about KDE’s eco initiative and the End of 10 campaign! Is Open Source really a win for environmentalism? How does the End of 10 campaign tie in? And what does Pewdiepie have to do with it? Watch to find out!

Continue reading “FLOSS Weekly Episode 840: End-of-10; Not Just Some Guy In A Van”

Diagnosing Whisker Failure Mode In AF114 And Similar Transistors

The inside of this AF117 transistor can was a thriving whisker ecosystem. (Credit: Anthony Francis-Jones)
The inside of this AF117 transistor can was a thriving whisker ecosystem. (Credit: Anthony Francis-Jones)

AF114 germanium transistors and related ones like the AF115 through AF117 were quite popular during the 1960s, but they quickly developed a reputation for failure. This is due to what should have made them more reliable, namely the can shielding the germanium transistor inside that is connected with a fourth ‘screen’ pin. This failure mode is demonstrated in a video by [Anthony Francis-Jones] in which he tests a number of new-old-stock AF-series transistors only for them all to test faulty and show clear whisker growth on the can’s exterior.

Naturally, the next step was to cut one of these defective transistors open to see whether the whiskers could be caught in the act. For this a pipe cutter was used on the fairly beefy can, which turned out to rather effective and gave great access to the inside of these 1960s-era components. The insides of the cans were as expected bristling with whiskers.

The AF11x family of transistors are high-frequency PNP transistors that saw frequent use in everything from consumer radios to just about anything else that did RF or audio. It’s worth noting that the material of the can is likely to be zinc and not tin, so these would be zinc whiskers. Many metals like to grow such whiskers, including lead, so the end effect is often a thin conductive strand bridging things that shouldn’t be. Apparently the can itself wasn’t the only source of these whiskers, which adds to the fun.

In the rest of the video [Anthony] shows off the fascinating construction of these germanium transistors, as well as potential repairs to remove the whisker-induced shorts through melting them. This is done by jolting them with a fairly high current from a capacitor. The good news is that this made the component tester see the AF114 as a transistor again, except as a rather confused NPN one. Clearly this isn’t an easy fix, and it would be temporary at best anyway, as the whiskers will never stop growing.

Continue reading “Diagnosing Whisker Failure Mode In AF114 And Similar Transistors”

CIS-4 Is A Monkish Clock Inside A Ceiling Lamp

It’s always clock time at Hackaday, and this time we have an interesting hack of a clock by [danjovic]– the CIS4, a Cistercian digital clock.

The Cistertians, in case you weren’t paying close attention to European holy orders during the 13th to 15th centuries were the group of monks you’d most likely have found us in. They were the hackers of the middle ages, establishing monestaries across western Europe that were chock full of hacks– including their own numeral system. Cistercian numerals were much more efficient (in spaces and penstrokes) than the Roman numerals they replaced, and even the “Arabic” numerals that replaced them. A single glyph could record anything from 1 to 9,999. (The Europeans hadn’t yet cottoned on to zero.)

The Cistertian glyphs reduced to a 4×4 display.

Depending how you wanted to count time, a single glyph could be used; it looks like [danjovic] is using the thousands and hundreds portions of the glyph for hours and the tens and ones for minutes. This is all accomplished with a 4×4 neopixel matrix, run by an Attiny85 Digispark with a DS3231 RTC module keeping time. A slight simplification is required to reduce the glyphs to 4×4, but we don’t think the monks would mind. For those of us who don’t wear tonsures, an easy read mode scrolls the time in Arabic numerals. (Which still aren’t super easy,with only 4×4 LEDs to display them. See the demo video embedded below and try and guess the time.)

One nice quality of life feature is an LDR for ambient light detection, to automatically adjust the neopixels’ brightness. The hackiest part, which we thought was really clever, is the enclosure: it’s a cheap LED ceiling light. This provides a diffuser, housing and mounting hardware with decent design for no effort. A 3D-printed mask sits between the diffuser and the LEDs and doubles as a PCB holder. All very elegant.

[danjovic] did include a buzzer in the design, but does say if its been programed to sound off for matins, nones and vespers. In any case, at least it’s easier to read than his binary-coded-octal clock that we featured a few years back. This isn’t our first look at this number system,so evidently people can read them with practice.

Have you made or seen a cool clock? Send us a tip. We always have time for clocks. Continue reading “CIS-4 Is A Monkish Clock Inside A Ceiling Lamp”

Back To The Future, 40 Years Old, Looks Like The Past

Great Scott! If my calculations are correct, when this baby hits 88 miles per hour, you’re gonna see some serious shit. — Doc Brown

On this day, forty years ago, July 3rd, 1985 the movie Back to the Future was released. While not as fundamental as Hackers or realistic as Sneakers, this movie worked its way into our pantheon. We thought it would be appropriate to commemorate this element of hacker culture on this day, its forty year anniversary.

If you just never got around to watching it, or if it has been a few decades since you did, then you might not recall that the movie is set in two periods. It opens in 1985 and then goes back to 1955. Most of the movie is set in 1955 with Marty trying to get back to 1985 — “back to the future”. The movie celebrates the advanced technology and fashions of 1985 and is all about how silly the technology and fashions of 1955 are as compared with the advancements of 1985. But now it’s the far future, the year 2025, and we thought we might take a look at some of the technology that was enchanting in 1985 but that turned out to be obsolete in “the future”, forty years on. Continue reading “Back To The Future, 40 Years Old, Looks Like The Past”