Putting More Tech Into More Hands: The Robin Hoods of Hackaday Prize

Many different projects started with the same thought: “That’s really expensive… I wonder if I could build my own for less.” Success is rewarded with satisfaction on top of the money saved, but true hacker heroes share their work so that others can build their own as well. We are happy to recognize such generosity with the Hackaday Prize [Robinhood] achievement.

Achievements are a new addition to our Hackaday Prize, running in parallel with our existing judging and rewards process. Achievements are a way for us to shower recognition and fame upon creators who demonstrate what we appreciate from our community.

Fortunately there is no requirement to steal from the rich to unlock our [Robinhood] achievement, it’s enough to give away fruits of price-reduction labor. And unlocking an achievement does not affect a project’s standings in the challenges, so some of these creators will still collect coveted awards. The list of projects that have unlocked the [Robinhood] achievement will continue to grow as the Hackaday Prize progresses, check back regularly to see the latest additions!

In the meantime, let’s look at a few notable examples that have already made the list:

Continue reading “Putting More Tech Into More Hands: The Robin Hoods of Hackaday Prize”

Tiny $25 Spectrometer Aims to Identify Materials with Ease

Reflectance spectrometers work on a simple principle: different things reflect different wavelengths in different amounts, and because similar materials do this similarly, the measurements can be used as a kind of fingerprint or signature. By measuring how much of which wavelengths get absorbed or reflected by a thing and comparing to other signatures, it’s possible to identify what that thing is made of. This process depends heavily on how accurately measurements can be made, so the sensors are an important part.

[Kris Winer] aims to make this happen with the Compact, $25 Spectrometer entry for The 2018 Hackaday Prize. The project takes advantage of smaller and smarter spectral sensors to fit the essential bits onto a PCB that’s less than an inch square. If the sensors do the job as expected then that’s a big part of the functionality of a reflectance spectrometer contained in a PCB less than an inch square and under $25; definitely a feat we’re happy to see.

Tweet The Power Of Lightning!

How quickly would you say yes to being granted the power to control lightning? Ok, since that has hitherto been impossible, what about the lesser power of detecting and tweeting any nearby lightning strikes?

Tingling at the possibility of connecting with lightning’s awesome power in one shape or another, [Hexalyse] combined AMS’s lightning sensor chip with a Raspberry Pi and a whipped up a spot of Python code to tweet the approach of a potential storm. Trusting the chip to correctly calculate strike data, [Hexalyse]’s detector only tweets at five minute intervals — because nobody likes a spambot — but waits for at least five strikes in a given time frame before announcing that a storm’s-a-brewing. Each tweet announces lightning strike energy, distance from the chip, and number of strikes since the last update. If there haven’t been any nearby lightning strikes for an hour, the twitter feed announces the storm has passed.

It just so happened that as [Hexalyse] finished up their project, a thunderstorm bore down on their town of Toulouse, France putting their project to the test — to positive success. Check out the detector’s tweets (in French).

We recently featured another type of lightning detector that auto-deploys a lightning rod once a storm arrives!