Project Sky Canvas - artificial shooting stars

Painting The Sky With Shooting Stars

Japanese company ALE has been working on a new type of sky show, artificial shooting stars, literally creating an artificial meteor shower at a height of 40 to 50 miles (60 to 80km). The show will be visible to anyone within a 125 mile diameter area (200km), meaning that people in New York city and Philadelphia or Los Angeles and San Diego can watch the same show. Aptly named, they’re calling the project “Sky Canvas”.

The plan is to have a satellite, containing around 500 to 1000 source particles, discharge the particles with a specially designed device. As the video below shows, by ejecting the particles in a continuous manner, rather than all at once, they’ll create the equivalent of a meteor shower. The particles will travel around 1/3rd the way around the Earth before entering the atmosphere, creating the shower of shooting stars. Different colors will be possible by using different materials for the particles, something this fireball cannon illustrates.

Continue reading “Painting The Sky With Shooting Stars”

It’s A Bird, It’s A Plane, No… It’s High Voltage EPROM Man!

At Hackaday, we cover some pretty high-tech builds. Sometimes, though, you see something simple, but it still makes you feel happy to see it. That’s pretty much the case with [ProtoG’s] High Voltage EPROM Man.

The parts probably came out of a junk box, but the good news is that they don’t have to work, and you can freely substitute anything you have. According to [ProtoG], the “robot” head is a bulb socket with a crystal for the visor. The arms are fuses with fuse clips for the hands. The knees are adjustable caps, and the feet are TO-220 transistors.

Continue reading “It’s A Bird, It’s A Plane, No… It’s High Voltage EPROM Man!”

Big Jacobs Ladder

11,000 Volt Jacob’s Ladder Sounds Like A Lightsaber

In the high-voltage world, a Jacob’s ladder is truly a sight to behold. They are often associated with mad scientist labs, due to both the awesome visual display and the sound that they make. A Jacob’s ladder is typically very simple. You need a high voltage electricity source and two bare wires. The wires are placed next to each other, almost in parallel. They form a slight “V” shape and are placed vertically. The system acts essentially as a short-circuit. The voltage is high enough to break through the air at the point where the wires are nearest to each other. The air rises as it heats up, moving the current path along with it. The result is the arc slowly raising upwards, extending in length. The sound also lowers in frequency as the arc gets longer, and once [Gristc] tuned his system just right the sound reminds us of the Holy Trilogy.

We’ve seen these made in the past with other types of transformers that typically put out around 15,000 Volts at 30mA. In this case, [Gristc] supersized the design using a much beefier transformer that puts out 11,000 Volts at 300mA. He runs the output from the transformer through eight microwave oven capacitors as a ballast. He says that without this, the system will immediately trip the circuit breakers in his house.

In the demo video below, you can see just how large the arc is. It appears to get about 10 inches long before breaking with a sound different from any Jacob’s ladders we’ve seen in the past as well. Continue reading “11,000 Volt Jacob’s Ladder Sounds Like A Lightsaber”

Low-Voltage Tesla Coil Uses A Relay Instead Of A Spark Gap

[Teodor] writes in with a unique Tesla coil he designed and built. Unlike most Tesla coils, [Teodor]’s design is able to run with a fairly low input voltage because it doesn’t use a static spark gap like most Tesla coils. Instead, his coil uses a relay in place of a spark gap.

[Teodor] built his coil using leftover components from his old school, making good use of some parts that might have otherwise been thrown away. The most critical component of his circuit, the relay, is just a standard normally-closed relay that is rated at 20A. [Teodor] wired the relay so that it energizes its own coil whenever it is shut. This causes the relay to briefly open every time the coil is energized, creating a resonant circuit. The resonant circuit charges a tank capacitor and places it in series with the primary coil inductor every time the relay closes, forming the tank circuit of his design.

With [Teodor]’s design, the resonant frequency of the secondary is nearly identical to that of the primary. This creates a significant voltage boost, helping produce very high voltages from such a low input voltage. The only downside to this design that [Teodor] recently discovered is that the relay contacts get red-hot after a few minutes of operation. Not optimal, but it still works! Check out [Teodor]’s writeup for more details and instructions on how to build your own.

Ephemeral Photographs Staged With Artful Inventions

[Gordon Kirkwood’s] focus as a photographer is in capturing ephemeral phenomena, that is, things that are exhilarating to see but also fleeting. In the pursuit of documenting such blips of beauty found in the natural word, he has taken on engineering the circumstance through which they occur by means of technology.

One of the amazing mechanical creations he’s constructed to aid in his photography is a large computer controlled, bubble blower. A few stepper motors work to dilate three segments of soap-soaked rope engaged at 120 degree angles to create a triangular aperture. When the aperture closes, the segments overlap slightly, covering themselves with a consistent coating of suds. When the segments stretch apart, a fan blows a current of air towards the center, pushing the sheath of fluid into ginormous glimmering orbs which he uses as the focal point in some of his photographs.

bubbleAparatus

More currently, [Gordon] has been developing a body of work that involves zapping botanical subject matter with a quarter-million volts from a portable arc producing device he’s created and capturing the reaction with an ultra low-tech camera (the kind with the bellow and sheet you hide under while exposing the film). Using a method all his own, the shots recorded on large format film are claimed to turn out with even more clarity than any current digital camera in use today. [Gordon] has launched a crowd funding campaign to support a pilgrimage to the majestic island of Hawaii, where he’ll use his lightning producing apparatus on ten different specimens of tropical plant life so that he can record the outcome with his tried and proven technique. (see below an artsy shot of his lightning summoner)

lighteningAparatus

Sometimes Kickstarter isn’t so much about commercialism as it is starting a dialogue with the world and beginning a personal adventure. May the journey lead to new inventions and larger, more ambitious projects! Oh yeah- the bubble blowing machine is a must-see in action. Wicked cool:

Continue reading “Ephemeral Photographs Staged With Artful Inventions”

1000W Search Light – Now Build A Bat Signal

Forget flashlights, and leave those burning lasers at home, [Ben Krasnow] built a search light using a 1000W xenon arc lamp. That box you see on the side of the trash-can housing countains a starting circuit that shoots 30 kilovolts through the xenon lamp to get it started but it is separate from the power supply. [Ben] started experimenting with the lamp back in April but recently finished the project by using the inverter from an arc welder to get the 50 amps at 20 volts needed when the lamp is on.

The insert on the left of the image above is an outdoor picture of the beam. You can make out a tree at the bottom. Take a look at the video after the break for a full walk-through of the circuitry and some test footage of the finished product.

Continue reading “1000W Search Light – Now Build A Bat Signal”

The Polyplasmic Archophone

The polyplasmic archophone is a fresh approach to high voltage “arc music“. They are using  an Arduino clone to convert signals for the ignition coils. It is still unfinished, but the effect is decent. In the end it will have 2 tiers of voice coils for a total of 13. They are using different materials for the antenna so they can get different colors of sparks. You can see a video of it after the break and we must say the effect is quite nice. Change the lighting on that video and we could imagine this being the set to a [Joules Verne] movie.

Continue reading “The Polyplasmic Archophone”