How The Lost Mystery Pigment ‘Maya Blue’ Got Recreated

A distinct blue pigment reminiscent of turquoise or a clear sky was used by the ancient Maya to paint pottery, sculptures, clothing, murals, jewelry, and even human sacrifices. What makes it so interesting is not only its rich palette — ranging from bright turquoise to a dark greenish blue — but also its remarkable durability. Only a small number of blue pigments were created by ancient civilizations, and even among those Maya blue is unique. The secret of its creation was thought to be lost, until ceramicist and artist [Luis May Ku] rediscovered it.

Maya blue is not just a dye, nor a ground-up mineral like lapis lazuli. It is an unusual and highly durable organic-inorganic hybrid; the result of a complex chemical process that involves two colorants. Here is how it is made: Indigotin is a dye extracted from ch’oj, the Mayan name for a specific indigenous indigo plant. That extract is combined with a very specific type of clay. Heating the mixture in an oven both stabilizes it produces a second colorant: dehydroindigo. Together, this creates Maya blue.

Luis May Ku posing with Maya blue.

The road to rediscovery was not a simple one. While the chemical makeup and particulars of Maya blue had been known for decades, the nuts and bolts of actually making it, not to mention sourcing the correct materials, and determining the correct techniques, was a long road. [May] made progress by piecing together invaluable ancestral knowledge and finally cracked the code after a lot of time and effort and experimentation. He remembers the moment of watching a batch shift in color from a soft blue to a vibrant turquoise, and knew he had finally done it.

Before synthetic blue pigments arrived on the scene after the industrial revolution, blue was rare and highly valuable in Europe. The Spanish exploitation of the New World included controlling Maya blue until synthetic blue colorants arrived on the scene, after which Maya blue faded from common knowledge. [May]’s rediscovered formula marks the first time the world has seen genuine Maya blue made using its original formula and methods in almost two hundred years.

Maya blue is a technological wonder of the ancient world, and its rediscovery demonstrates the resilience and scientific value of ancestral knowledge as well as the ingenuity of those dedicated to reviving lost arts.

We’re reminded that paints and coatings have long been fertile ground for experimentation, and as an example we’ve seen the success people had in re-creating an ultra-white paint that actually has a passive cooling effect.

A brown sphere with a flat top, a nose and circular eyes sits on the ground surrounded by low vegetation. A wooden fence is behind it.

Making A Stool From Clay

We’ve seen furniture made out of all sorts of interesting materials here, but clay certainly isn’t the first one that comes to mind. [Mia Mueller] is expanding our horizons with this clay stool she made for her garden.

Starting with an out-of-budget inspiration piece, [Mueller] put her own spin on a ceramic stool that looks like a whimsical human head. An experienced potter, she shows us several neat techniques for working with larger pieces throughout the video. Her clay extruder certainly beats making coils by hand like we did in art class growing up! Leaving the coils wrapped in a tarp allows her to batch the process coils and leave them for several days without worrying about them drying out.

Dealing with the space constraints of her small kiln, her design is a departure from the small scale prototype, but seeing how she works through the problems is what really draws us to projects like this in the first place. If it was easy, it wouldn’t be making, would it? The final result is a beautiful addition to her garden and should last a long time since it won’t rot or rust.

If you’re thinking of clay as a medium, we have some other projects you might enjoy like this computer mouse, 3D printing with clay, or a clay battery.

Continue reading “Making A Stool From Clay”

Receipt paper mural from above eye level

Massive Mural From Thermal Receipt Paper

Turning trash into art is something we undoubtedly all admire. [Davis DeWitt] did just that with a massive mural made entirely from discarded receipt paper. [Davis] got lucky while doing some light dumpster diving, where he stumbled upon the box of thermal paper rolls. He saw the potential them and, armed with engineering skills and a rental-friendly approach, set out to create something original.

The journey began with a simple test: how long can a receipt be printed, continuously? With a maximum length of 10.5 feet per print, [Davis] designed an image for the mural using vector files to maintain a high resolution. The scale of the project was a challenge in itself, taking over 13 hours to render a single image at the necessary resolution for a mural of this size. The final piece is 30 foot (9.144 meters) wide and 11 foot (3.3528 meters) tall – a pretty conversational piece in anyone’s room – or shop, in [Davis]’ case.

Once the design was ready, the image was sliced into strips that matched the width of the receipt paper. Printing over 1,000 feet of paper wasn’t without its issues, so [Davis] designed a custom spool system to undo the curling of the receipts. Hanging the mural involved 3D-printed brackets and binder clips, allowing the strips to hang freely with a kinetic effect.

Though the thermal paper will fade over time, the beauty of this project lies in its adaptability—just reprint any faded strips. Want to see how it all came together? Watch the full process here.

Continue reading “Massive Mural From Thermal Receipt Paper”

Split-Flap Clock Flutters Its Way To Displaying Time Without Numbers

Here’s a design for a split-flap clock that doesn’t do it the usual way. Instead of the flaps showing numbers , Klapklok has a bit more in common with flip-dot displays.

Klapklok updates every 2.5 minutes.

It’s an art piece that uses custom-made split-flaps which flutter away to update the display as time passes. An array of vertically-mounted flaps creates a sort of low-res display, emulating an analog clock. These are no ordinary actuators, either. The visual contrast and cleanliness of the mechanism is fantastic, and the sound they make is less of a chatter and more of a whisper.

The sound the flaps create and the sight of the high-contrast flaps in motion are intended to be a relaxing and calming way to connect with the concept of time passing. There’s some interactivity built in as well, as the Klapklok also allows one to simply draw on it wirelessly with via a mobile phone.

Klapklok has a total of 69 elements which are all handmade. We imagine there was really no other way to get exactly what the designer had in mind; something many of us can relate to.

Split-flap mechanisms are wonderful for a number of reasons, and if you’re considering making your own be sure to check out this easy and modular DIY reference design before you go about re-inventing the wheel. On the other hand, if you do wish to get clever about actuators maybe check out this flexible PCB that is also its own actuator.

Continue reading “Split-Flap Clock Flutters Its Way To Displaying Time Without Numbers”

What’s The Deal With AI Art?

A couple weeks ago, we had a kerfuffle here on Hackaday: A writer put out a piece with AI-generated headline art. It was, honestly, pretty good, but it was also subject to all of the usual horrors that get generated along the way. If you have played around with any of the image generators you know the AI-art uncanny style, where it looks good enough at first glance, but then you notice limbs in the wrong place if you look hard enough. We replaced it shortly after an editor noticed.

The story is that the writer couldn’t find any nice visuals to go with the blog post, with was about encoding data in QR codes and printing them out for storage. This is a problem we have frequently here, actually. When people write up a code hack, for instance, there’s usually just no good image to go along with it. Our writers have to get creative. In this case, he tossed it off to Stable Diffusion.

Some commenters were afraid that this meant that we were outsourcing work from our fantastic, and very human, art director Joe Kim, whose trademark style you’ve seen on many of our longer-form original articles. Of course we’re not! He’s a genius, and when we tell him we need some art about topics ranging from refining cobalt to Wimshurst machines to generate static electricity, he comes through. I think that all of us probably have wanted to make a poster out of one or more of his headline art pieces. Joe is a treasure.

But for our daily blog posts, which cover your works, we usually just use a picture of the project. We can’t ask Joe to make ten pieces of art per day, and we never have. At least as far as Hackaday is concerned, AI-generated art is just as good as finding some cleared-for-use clip art out there, right?

Except it’s not. There is a lot of uncertainty about the data that the algorithms are trained on, whether the copyright of the original artists was respected or needed to be, ethically or legally. Some people even worry that the whole thing is going to bring about the end of Art. (They worried about this at the introduction of the camera as well.) But then there’s also the extra limbs, and AI-generated art’s cliche styles, which we fear will get old and boring after we’re all saturated with them.

So we’re not using AI-generated art as a policy for now, but that’s not to say that we don’t see both the benefits and the risks. We’re not Luddites, after all, but we are also in favor of artists getting paid for their work, and of respect for the commons when people copyleft license their images. We’re very interested to see how this all plays out in the future, but for now, we’re sitting on the sidelines. Sorry if that means more headlines with colorful code!

Ultra-Black Material, Sustainably Made From Wood

Researchers at the University of British Columbia leveraged an unusual discovery into ultra-black material made from wood. The deep, dark black is not the result of any sort of dye or surface coating; it’s structural change to the wood itself that causes it to swallow up at least 99% of incoming light.

One of a number of prototypes for watch faces and jewelry.

The discovery was partially accidental, as researchers happened upon it while looking at using high-energy plasma etching to machine the surface of wood in order to improve it’s water resistance. In the process of doing so, they discovered that with the right process applied to the right thickness and orientation of wood grain, the plasma treatment resulted in a surprisingly dark end result. Fresh from the plasma chamber, a wood sample has a thin coating of white powder that, once removed, reveals an ultra-black surface.

The resulting material has been dubbed Nxylon (the name comes from mashing together Nyx, the Greek goddess of darkness, with xylon the Greek word for wood) and has been prototyped into watch faces and jewelry. It’s made from natural materials, the treatment doesn’t create or involve nasty waste, and it’s an economical process. For more information, check out UBC’s press release.

You have probably heard about Vantablack (and how you can’t buy any) and artist Stuart Semple’s ongoing efforts at making ever-darker and accessible black paint. Blacker than black has applications in optical instruments and is a compelling thing in the art world. It’s also very unusual to see an ultra-black anything that isn’t the result of a pigment or surface coating.

AI Image Generator Twists In Response To MIDI Dials, In Real-time

MIDI isn’t just about music, as [Johannes Stelzer] shows by using dials to adjust AI-generated imagery in real-time. The results are wild, with an interactivity to them that we don’t normally see in such things.

[Johannes] uses Stable Diffusion‘s SDXL Turbo to create a baseline image of “photo of a red brick house, blue sky”. The hardware dials act as manual controls for applying different embeddings to this baseline, such as “coral”, “moss”, “fire”, “ice”, “sand”, “rusty steel” and “cookie”.

By adjusting the dials, those embeddings are applied to the base image in varying strengths. The results are generated on the fly and are pretty neat to see, especially since there is no appreciable amount of processing time required.

The MIDI controller is integrated with the help of lunar_tools, a software toolkit on GitHub to facilitate creating interactive exhibits. As for the image end of things, we’ve previously covered how AI image generators work.