2025 One Hertz Challenge: Atomic Decay Clock Is Accurate But Not Precise

At this point, atomic clocks are old news. They’ve been quietly keeping our world on schedule for decades now, and have been through several iterations with each generation gaining more accuracy. They generally all work under the same physical principle though — a radio signal stimulates a gas at a specific frequency, and the response of the gas is used to tune the frequency. This yields high accuracy and high precision — the spacing between each “tick” of an atomic clock doesn’t vary by much, and the ticks cumulatively track the time with very little drift.

All of this had [alnwlsn] thinking about whether he could make an “atomic” clock that measures actual radioactive decay, rather than relying on the hyperfine transition states of atoms. Frustratingly, most of the radioactive materials that are readily available have pretty long half-lives — on the order of decades or centuries. Trying to quantify small changes in the energy output of such a sample over the course of seconds or minutes would be impossible, so he decided to focus on the byproduct of decay — the particles being emitted.

He used a microcontroller to count clicks from a Geiger-Müller tube, and used the count to calculate elapsed time by multiplying by a calibration factor (the expected number of clicks per second). While this is wildly inaccurate in the short term (he’s actually used the same system to generate random numbers), over time it smooths out and can provide a meaningful reading. After one year of continuous operation, the counter was only off by about 26 minutes, or 4.4 seconds per day. That’s better than most mechanical wristwatches (though a traditional Rubidium atomic clock would be less than six milliseconds off, and NIST’s Strontium clock would be within 6.67×10-11 seconds).

The end result is a probabilistic radiometric timepiece that has style (he even built a clock face with hands, rather than just displaying the time on an LCD). Better yet, it’s got a status page where you can check on on how it’s running. We’ve seen quite a few atomic clocks over the years, but this one is unique and a great entry into the 2025 One Hertz Challenge.

Atomic Clock Trades Receiver For An ESP8266

The advantage of a radio-controlled clock that receives the time signal from WWVB is that you never have to set it again. Whether it’s a little digital job on your desk, or some big analog wall clock that’s hard to access, they’ll all adjust themselves as necessary to keep perfect time. But what if the receiver conks out on you?

Well, you’d still have a clock. But you’d have to set it manually like some kind of Neanderthal. That wasn’t acceptable to [jim11662418], so after he yanked the misbehaving WWVB receiver from his clock, he decided to replace it with an ESP8266 that could connect to the Internet and get the current time via Network Time Protocol (NTP).

Continue reading “Atomic Clock Trades Receiver For An ESP8266”

Poking Atomic Nuclei With Lasers For Atomic Clocks And Energy Storage

Although most people are probably familiar with the different energy levels that the electron shells of atoms can be in and how electrons shedding excess energy as they return to a lower state emit for example photons, the protons and neutrons in atomic nuclei can also occupy an excited state. This nuclear isomer (metastable) state is a big part of radioactive decay chains, but can also be induced externally. The trick lies in hitting the right excitation wavelength and being able to detect the nuclear transition, something which researchers at the Technical University of Wien have now demonstrated for thorium-229.

The findings by [J.Tiedau] and colleagues were published in Physical Review Letters, describing the use of a vacuum-ultraviolet (VUV) laser setup to excite Th-229 into an isomer state. This isotope was chosen for its low-energy isomeric state, with the atoms embedded in a CaF2 crystal lattice. By trying out various laser wavelengths and scanning for the signature of the decay event they eventually detected the signal, which raises the possibility of using this method for applications like new generations of much more precise atomic clocks. It also provides useful insights into nuclear isomers as it pertains to tantalizing applications like high-density energy storage.

Continue reading “Poking Atomic Nuclei With Lasers For Atomic Clocks And Energy Storage”

Simulating A Time-Keeping Radio Signal

As far as timekeeping goes, there’s nothing more accurate and precise than an atomic clock. Unfortunately, we can’t all have blocks of cesium in our basements, so various agencies around the world have maintained radio stations which, combined with an on-site atomic clock, send out timekeeping signals over the air. In the United States, this is the WWVB station located in Colorado which is generally receivable anywhere in the US but can be hard to hear on the East Coast. That’s why [JonMackey], who lives in northern New Hampshire, built this WWVB simulator.

Normally, clocks built to synchronize with the WWVB station include a small radio antenna to receive the 60 kHz signal and the 1-bit-per-second data transmission which is then decoded and used to update the time shown on the clock. Most of these clocks have internal (but much less precise) timekeeping circuitry to keep themselves going if they lose this signal, but [JonMackey] can go several days without his clocks hearing it. To make up for that he built a small transmitter that generates the proper timekeeping code for his clocks. The system is based on an STM32 which receives its time from GPS and broadcasts it on the correct frequency so that these clocks can get updates.

The small radio transmitter is built using one of the pins on the STM32 using PWM to get its frequency exactly at 60 kHz, which then can have the data modulated onto it. The radiating area is much less than a meter, so this isn’t likely to upset any neighbors, NIST, or the FCC, and the clocks need to be right beside it to update. Part of the reason why range is so limited is that very low frequency (VLF) radios typically require enormous antennas to be useful, so if you want to listen to more than timekeeping standards you’ll need a little bit of gear.

Inside A Rubidium Frequency Standard

We think of crystals as the gold standard of frequency generation. However, if you want real precision, you need something either better than a crystal or something that will correct for tiny errors — often called disciplining the oscillator. [W3AXL] picked up a rubidium reference oscillator on eBay at a low cost, and he shows us how it works in the video you can see below. He started with a GPS-disciplined oscillator he had built earlier and planned to convert it to discipline from the rubidium clock.

The connector looks like a D-shell connector superficially, but it has a coax connector in addition to the usual pins. The device did work on initial powerup, and using a lissajous pattern to compare the existing oscillator with the new device worked well.

Continue reading “Inside A Rubidium Frequency Standard”

Move Over Cesium Clock, Optical Clocks Are Taking Over

We normally think of atomic clocks as the gold standard in timekeeping. The very definition of a second — in modern times, at least — is 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of a stationary cesium-133 atom at a temperature of 0K. But there is a move to replace that definition using optical clocks that are 100 times more accurate than a standard atomic clock.

In recent news, the Boulder Atomic Clock Optical Network — otherwise known as BACON — compared times from three optical clocks and found that the times differed a little more than they had predicted, but the clocks were still amazingly accurate relative to each other. Some of the links used optical fibers, a method used before. But there were also links carried by lasers aimed from one facility to another. The lasers, however didn’t work during a snowstorm, but when they did work the results were comparable to the optical fiber method.

Continue reading “Move Over Cesium Clock, Optical Clocks Are Taking Over”

Cesium Clock Teardown, Or Quantum Physics Playground

Half the fun of getting vintage test equipment is getting to open it up. Maybe that’s even more than half of the fun. [CuriousMarc] got an HP 5061A Cesium clock, a somewhat famous instrument as the model that attempted to prove the theory of relativity. The reason? The clock was really the first that could easily be moved around, including being put on an airplane. You can watch the video below.

According to the video, you can simplify special relativity to saying that time slows down if you go fast — that is known as time dilation. General relativity indicates that time slows down with increasing gravity. Therefore, using airborne Cesium clocks, you could fly a clock in circles high up or fly at high speeds and check Einstein’s predictions.
Continue reading “Cesium Clock Teardown, Or Quantum Physics Playground”