Simulating A Time-Keeping Radio Signal

As far as timekeeping goes, there’s nothing more accurate and precise than an atomic clock. Unfortunately, we can’t all have blocks of cesium in our basements, so various agencies around the world have maintained radio stations which, combined with an on-site atomic clock, send out timekeeping signals over the air. In the United States, this is the WWVB station located in Colorado which is generally receivable anywhere in the US but can be hard to hear on the East Coast. That’s why [JonMackey], who lives in northern New Hampshire, built this WWVB simulator.

Normally, clocks built to synchronize with the WWVB station include a small radio antenna to receive the 60 kHz signal and the 1-bit-per-second data transmission which is then decoded and used to update the time shown on the clock. Most of these clocks have internal (but much less precise) timekeeping circuitry to keep themselves going if they lose this signal, but [JonMackey] can go several days without his clocks hearing it. To make up for that he built a small transmitter that generates the proper timekeeping code for his clocks. The system is based on an STM32 which receives its time from GPS and broadcasts it on the correct frequency so that these clocks can get updates.

The small radio transmitter is built using one of the pins on the STM32 using PWM to get its frequency exactly at 60 kHz, which then can have the data modulated onto it. The radiating area is much less than a meter, so this isn’t likely to upset any neighbors, NIST, or the FCC, and the clocks need to be right beside it to update. Part of the reason why range is so limited is that very low frequency (VLF) radios typically require enormous antennas to be useful, so if you want to listen to more than timekeeping standards you’ll need a little bit of gear.

Keeping Clocks On Time, The Swiss Way

Could there be a worse fate for a guy with a Swiss accent than to be subjected to a clock that’s seconds or even – horrors! – minutes off the correct time? Indeed not, which is why [The Guy With the Swiss Accent] went to great lengths to keep his IKEA radio-controlled clock on track.

For those who haven’t seen any of [Andreas Spiess]’ YouTube videos, you’ll know that he pokes a bit of fun at Swiss stereotypes such as precision and punctuality. But really, having a clock that’s supposed to synchronize to one of the many longwave radio atomic clocks sprinkled around the globe and yet fails to do so is irksome to even the least chrono-obsessive personality. His IKEA clock is supposed to read signals from station DCF77 in Germany, but even the sensitive receivers in such clocks can be defeated by subterranean locales such as [Andreas]’ shop. His solution was to provide a local version of DCF77 using a Raspberry Pi and code that sends modulated time signals to a GPIO pin. The pin is connected to a ferrite rod antenna, which of course means that the Pi is being turned into a radio transmitter and hence is probably violating the law. But as [Andreas] points out, if the power is kept low enough, the emissions will only ever be received by nearby clocks.

With his clock now safely synced to an NTP server via the tiny radio station, [Andreas] can get back to work on his other projects, such as work-hardening copper wire for antennas with a Harley, or a nuclear apocalypse-Tweeting Geiger counter.

Continue reading “Keeping Clocks On Time, The Swiss Way”

No Signal For Your Radio-Controlled Watch? Just Make Your Own Transmitter

You can win any argument about the time when you have a radio controlled watch. Or, at least, you can if there’s any signal. [Henner Zeller] lives in a place where there is no reception of the DCF77 signal that his European wristwatch expects to receive. Consequently, he decided to make his own tiny transmitter, which emulates the DCF77 signal and allows the watch to synchronise.

A Raspberry Pi Zero W is the heart of the transmitter, and [Henner] manages to coax it into generating 77500.003Hz on a GPIO pin – close enough to the 77.5kHz carrier that DCF77 uses. The signal is AM, and transmits one bit/s, repeating every minute. A second GPIO performs the required attenuation, and a few loops of wire are sufficient for an antenna which only needs to work over a few inches. The Raspberry Pi syncs with NTP Stratum 1 servers, which gives the system time an accuracy of about ±50ms. The whole thing sits in a slick 3D printed case, which provides a stand for the watch to rest on at night; this means that every morning it’s synchronised and ready to go.

[Henner] also kindly took the time to implement the protocols for WWVB (US), MSF (UK) and JJY (Japan). This might be just as well, given that we recently wrote about the possibility of WWVB being switched off. Be sure to check the rules in your area before giving this a try.

We’ve seen WWVB emulators before, like this ATtiny45 build, but we love that this solution is an easy command line tool which supports many geographical locations.

What Will You Do If WWVB Goes Silent?

Buried on page 25 of the 2019 budget proposal for the National Institute of Standards and Technology (NIST), under the heading “Fundamental Measurement, Quantum Science, and Measurement Dissemination”, there’s a short entry that has caused plenty of debate and even a fair deal of anger among those in the amateur radio scene:

NIST will discontinue the dissemination of the U.S. time and frequency via the NIST radio stations in Hawaii and Ft. Collins, CO. These radio stations transmit signals that are used to synchronize consumer electronic products like wall clocks, clock radios, and wristwatches, and may be used in other applications like appliances, cameras, and irrigation controllers.

The NIST stations in Hawaii and Colorado are the home of WWV, WWVH, and WWVB. The oldest of these stations, WWV, has been broadcasting in some form or another since 1920; making it the longest continually operating radio station in the United States. Yet in order to save approximately $6.3 million, these time and frequency standard stations are potentially on the chopping block.

What does that mean for those who don’t live and breathe radio? The loss of WWV and WWVH is probably a non-event for anyone outside of the amateur radio world. In fact, most people probably don’t know they even exist. Today they’re primarily used as frequency standards for calibration purposes, but in recent years have been largely supplanted by low-cost oscillators.

But WWVB on the other hand is used by millions of Americans every day. By NIST’s own estimates, over 50 million timepieces of some form or another automatically synchronize their time using the digital signal that’s been broadcast since 1963. Therein lies the debate: many simply don’t believe that NIST is going to shut down a service that’s still actively being used by so many average Americans.

The problem lies with the ambiguity of the statement. That the older and largely obsolete stations will be shuttered is really no surprise, but because the NIST budget doesn’t specifically state whether or not the more modern WWVB is also included, there’s room for interpretation. Especially since WWVB and WWV are both broadcast from Ft. Collins, Colorado.

What say the good readers of Hackaday? Do you think NIST is going to take down the relatively popular WWVB? Are you still using devices that sync to WWVB, or have they all moved over to pulling their time down over the Internet? If WWVB does go off the air, are you prepared to setup your own pirate time station?

[Thanks to AG6QR for the tip.]

Ask Hackaday: Is Your Clock Tied To Mains Frequency?

Earlier in March we heard about a quirk of the interconnected continental European electricity grid which caused clocks to lose about six minutes so far this year. This was due to a slight dip in the mains frequency. That dip didn’t put anything out of commission, but clocks that are designed to accumulate the total zero-crossings of the power grid frequency of 50 Hz don’t keep accurate time when that frequency is, say 49.985 Hz for an extended period of time.

An interesting set of conversations popped up from that topic. There were several claims that modern alarm clocks, and most devices connected to mains, no longer get their clock timing from mains frequency. I’ve looked into this a bit which I’ll go into below. But what we really want to know is: are your alarm clocks and other devices keeping time with the grid or with something else?

Continue reading “Ask Hackaday: Is Your Clock Tied To Mains Frequency?”

Crowdsourcing The Study Of An Eclipse’s Effect On Radio Propagation

If you are an American, you’ll probably now find yourself in one of three camps. People who are going to see the upcoming solar eclipse that will traverse your continent, people who aren’t going to see the eclipse, and people who wish everyone would just stop going on incessantly about the damn eclipse.

Whichever of those groups you are in though, there is an interesting project that you can be a part of, an effort from the University of Massachusetts Boston to crowdsource scientific observation of the effect a solar eclipse will have on the upper atmosphere, and in particular upon the propagation of low-frequency radio waves. To do this they have been encouraging participants to build their own simple receiver and antenna, and make a series of recordings of the WWVB time signal station before, during, and after the eclipse traverse.

This is an interesting and unusual take upon participation in the eclipse, and has the potential to advance the understanding of atmospheric science. It would be fascinating to also look at the effect of the eclipse on WSPR contacts, though obviously those occur in amateur bands at higher frequencies.

If you are an EclipseMob participant, we’d love to hear from you in the comments. Does your receiver perform well?

Thanks [Douglas] for the tip.

Micro Radio Time Station Keeps Watch In Sync

The US National Institute of Standards and Technology (NIST) broadcasts atomic clock time signals from Fort Collins, Colorado on various frequencies. The WWVB signal on 60 kHz blasts out 70,000 watts that theoretically should reach the entire continental US. Unfortunately for [Anish Athalye], the signals do not reach his Massachusetts dorm, so he built this GPS to WWVB converter to keep his Casio G-Shock self-setting watch on track.

Not a repeater but a micro-WWVB transmitter, [Anish]’s build consists of a GPS receiver module and an ultra low-power 60kHz transmitter based on an ATtiny44a microcontroller’s hardware PWM driving a ferrite rod antenna. It’s not much of a transmitter, but it doesn’t need to be since the watch is only a few inches away. That also serves to keep the build in compliance with FCC regulations regarding low-power transmissions. Heavy wizardry is invoked by the software needed to pull time data off the GPS module and convert it to WWVB time code format, with the necessary time zone and Daylight Savings Time corrections. Housed in an attractive case, the watch stand takes about three minutes to sync the watch every night.

[Anish] offers some ideas for improving the accuracy, but we think he did just fine with this build. We covered a WWVB signal spoofer before, but this build is far more polished and practical.