Beautiful Sourdough Bread At Home Thanks To Dynamic Recipe Parameterization

More people are making sourdough at home than ever before, and while it may not take a lot of effort to find a decent recipe, it’s quite another thing to try using recipes to figure out how and why bread actually works. Thankfully, [Makefast Workshop] has turned copious research and hundreds of trials into a dynamic sourdough (and semi-sourdough) bread recipe chock-full of of drop-down options to customize not just ingredients, but baking methods and other recipe elements as well. Want to adjust quantities or loaf styles? Play with hydration or flour type? It’s all right there, and they even have quick-set options for their personal favorites.

In order to do all this, [Makefast Workshop] needed to understand bread at a deeper level than is usually called for. During research, they observed that the format of recipes was often an obstacle to understanding how good bread actually gets made. The reason for this is simple: recipes are presented as standalone documents describing a fixed process; a set of specific steps that, when followed, yield a particular result. What they do not normally do is describe the interplay and balance between ingredients and processes, which makes it difficult to understand how and why exactly the recipe produces what it does. Without that knowledge, it’s impossible to know what elements can be adjusted, and how. The dynamic recipe changes all that.

[Makefast Workshop] performed hundreds of tests, dialing in parameters one by one, to gain the insights needed to populate their dynamic recipe. It’s got clear processes and drop-down options that dynamically update not just the recipe steps, but also the URL. This means that one can fiddle the recipe to one’s desire, then simply copy and paste the URL to keep track of what one has baked.

When it comes to thoughtful approaches to food, this certainly isn’t [Makefast Workshop]’s first rodeo. We covered their beautiful directions for creating delicious speculoos, complete with effective 3D printed molds for a modern twist on a Belgian classic.

Advanced Techniques For Realistic Baking Animations

Computer graphics have come a long way since the days of Dire Straits and their first computer animated music video in 1985. To move the state of the art forward has taken the labor of countless artists, developers and technicians. Working in just that field, a group from UCLA have developed an advanced system for simulating baking in computer graphics, and the results look absolutely delicious.

We propose a porous thermo-viscoelastoplastic mixture model.

The work is being presented at SIGGRPAH Asia, and being an academic paper, is dense in arcane terminology. To properly simulate baking, the team had to consider a multitude of interdependent processes. There’s heat transfer to consider, the release of carbon dioxide from leavening agents, the browning of dough due to evaporation of water, and all manner of other complicated chemical and physical interactions.

With a model that takes all of these factors into account, the results are amazingly realistic. The team have shown off renders of cookies in the oven, freshly baked loaves of bread being torn apart, and even muffins full of melted chocolate chips.

We imagine it would have been difficult not to work up an appetite during the research process. We’ve seen impressive work from SIGGRAPH before, like this method for printing photorealistic images on 3D surfaces. Video after the break.

Continue reading “Advanced Techniques For Realistic Baking Animations”

The Quest For Perfect Croissants Via A DIY Dough Sheeter

Baking is a wonderful pastime, as much an art as a science. [Alex] pursues the craft with plenty of vigor, and had built his very own dough sheeter to assist in his work. Unfortunately, the design had several flaws, and came out of a recent move rather the worse for wear. Growing tired of having to deal with dough of inconsistent thickness, he went back to the drawing board to whip up a new version (Youtube link, embedded below).

The new model improves significantly over the predecessor, by directly addressing the engineering pitfalls of the first design.

The core of the machine is a moving platform combined with a rolling pin, that can be set to a desired height to roll the dough into a set thickness. This is key to baking top-notch croissants, which [Alex] takes very seriously. His initial model used a table leg for a rolling pin, fitted with a threaded rod down the centre. This had significant issues with both runout, and uneven diameter across its length. Additionally, its frame had not held up after a recent move, and [Alex] was keen to start again.

The new model starts with attention paid to the basic engineering issues. The table leg is replaced with a professional-grade rolling pin, fitted with 3D-printed gears that accurately align the axis of rotation to the centre of the pin. A rack and pinion drive is also added to move the dough platform. Finally, a locking pin system is used to set the desired height of the dough.

It’s a useful project for the keen baker, and one that leans heavily on additive manufacturing methods. Producing such a tool in the years before 3D printers would have required significant effort to produce the required gears and mating components, so it’s impressive to see how easily something like this can come together these days. A hacker mindset can always be handy for baking – don’t forget, you can improve your bread crusts with steam! Video after the break.

Continue reading “The Quest For Perfect Croissants Via A DIY Dough Sheeter”

The Bakery That Runs On Emacs

When it comes to managing ingredients and baking at a professional bakery, we know that most people would turn to an SQL database and emacs.  Really, what else do you need? Okay, so maybe there are a few who would think that emacs couldn’t help you with this, so, here’s how [Piers] uses emacs and PostgresSQL to manage the day to day needs at his bakery.

[Piers] had tried a spreadsheet to keep track of things, but didn’t really like it when he had to create a new recipe:  “lots of tedious copying, pasting and repetition of formulae” is how he put it. As a ex-professional programmer, [Piers] was familiar with emacs and so set up a daily worksheet in emacs using org-mode. Each morning he runs org-capture to create the template for the day’s work. Some code in the org file (run with org-babel) can run a query on the database. He’s created some code to set up each day’s journal entry and to run the complicated database queries that he needs.

There is a list of things that [Piers] is working on next, including ingredient order management and accounting, but it works for him. And to stop any potential flame wars that might break out, it’s good to mention that the system does just that: It works for him. There are other possibilities. Take a look at Al’s Editor Wars article, or Elliot’s rebuttal, or, ignore the wars and read this article on baking with steam.

Breadboarding: Git For A/B Testing Actual Bread

We will be the first to admit, we like to use Git for a lot of things that are probably off the beaten path. But now thanks to [hendricius] you can find out how to make your own bread on GitHub. Let’s get one thing straight. This isn’t the breadmaker fad from a while back, although we are surprised we don’t see more hacked together breadmakers with Internet connectivity. This is old-fashioned bread baking with a bowl, some ingredients, and an oven or another heat source.

You might think this is just using Git as a repository for recipes, but it is more than that. According to [hendricius]:

Learn how to master the art of baking the programmer way. If you love programming, you will also enjoy breaking some bread. A/B test, iterate and ultimately become a self-taught baker. This repository is dedicated to becoming your bread manifesto with useful tricks and hacks. Furthermore, the goal is to illustrate how easy making bread is and that you can get started today without expensive tools.

Continue reading “Breadboarding: Git For A/B Testing Actual Bread”

Hack A Cake

What’s a hacker going to do with an oven? Reflow solder? Dry out 3D printing filament? If you are [Alicia Gibb] you’d be baking a cake. While complaining that projects aren’t a hack seems to be a favorite past time for Hackaday commentators, we think [Alicia] will be in the clear. Why? Because these cakes have Arduinos, LEDs, and motorized candles among other gizmos.

The Game Boy cake is undeniably cool, although we have to admit the cake that screams when cut got our attention (see video below), even if it would unnerve guests.

As you might expect, you can’t bake the electronics directly into the cake. [Alicia] uses Tupperware or parchment paper to create cavities for the electronics. Connections and other solder joints get professional grade Saran wrap to keep the lead and other awful chemicals out of the cake.

Continue reading “Hack A Cake”

Arduino-Based Dispenser Delivers Liquids, Powders

If you like to cook or bake, you probably don’t measure everything out in little bowls and ramekins before you start. Well,unless you also happen to like doing dishes. Even so, there are a lot of measuring spoons and -cups that end up getting dirty in the process. But what if you had a measuring machine to dole out spices and low-viscosity liquids in specific quantities for you?

[enddev]’s creation is based around an Arduino Mega, and the interface is three buttons and an LCD. The user selects between liquid and powder, followed by the desired measurement. If liquid is chosen, the peristaltic pump is engaged to deliver the specified amount through silicone tubing. The current powder setup uses a kitchen scale, which the designers found to be inaccurate for small amounts. They believe that a volume auger and stepper motor would be ideal.

The team mentions that the powder delivery system is better suited for flakier substances since it’s basically agitated out of the container. This makes us think this would be great for feeding fish. If you take this admirably-written Instructable and use it to feed your fish or something, let us know. Their code is on the gits.

[via Embedded Lab]