DIY GLOBARS For Nighttime Bike Visibility

Inspired by a non-existant yet still cool illuminated bicycle handlebar project, [Becky] over at Adafruit came up with her own version of light up  handlebars. Not only is her project actually real, they’re also a pretty cool build that brings a little lightcycle ambiance to twilight bicycling.

[Becky]’s light up handlebars are inspired by the GLOBARS concept design that made the blog rounds earlier this year. Instead of custom machined aluminum tubing, [Becky] used an Adafruit LED strip neatly assembled with heat shrink tubing and waterproof tape, along with an 8 AA-cell battery holder in a fabric and velcro pouch suspended from the top tube on her bike.

After wrapping the LEDs around the handlebars, [Becky] wrapped them in clear handlebar tape she sourced from Amazon. From the video after the break, the 2 meter LED strip on [Becky]’s handlebars verge on lightcycle territory, but sourcing a 6 AA-cell battery holder over an 8-cell will bring the brightness down to a reasonable but still safe level.

You can check out [Becky]’s build video after the break.

Continue reading “DIY GLOBARS For Nighttime Bike Visibility”

Defense Against The Dog Arts

It’s possible that it was [Matt Meerian]’s awesome pun that won us over, not his ultrasonic bicycle dog defense system, but that would be silly. [Matt] wanted an elegant solution to a common problem when riding a bicycle, dogs. While, obscenities, ammonia, water, pepper spray, and others were suggested, they all had cons that just didn’t appeal to [Matt]. He liked the idea of using C02 powered high pressure sound waves to chase the dogs away with, but decided to choose a more electronic approach.  He used a Atmel ATmega644 as the MCU, four 25kHz transmitters, and two 40kHz transmitters. When the rider sees a dog he simply flips a switch and it activates the transducers (along with, cleverly, a human audible horn so he doesn’t have to look down to know it’s working). So far [Matt] has not had a dog chase him in order to test it’s efficacy, but his cat clearly seems unaffected by the device as you can see after the break. Continue reading “Defense Against The Dog Arts”

Hackaday Links: July 13, 2012

Testing LEDs

Over at the Albuquerque, NM hackerspace Quelab, [Alfred] needed to test a bunch of surface mount LEDs. He ended up building a pair of 3D printed tweezers with a pair of needles attached to the end and a space for a coin cell battery. It works and Quelab got a new tool.

Woo Raspberry Pi

[tech2077] added an FTDI chip to his Raspberry Pi to do a little single cable development. We’ve seen a few similar builds, but surprisingly nothing related to the on board display serial interface. This wiki page suggests it’s possible to connect an iPhone 3G or iPhone 4 display directly to the Raspi. Does anyone want to try that out?  Nevermind, but it would be cool to get a picture from a display plugged into that display port on the Raspi.

I like to ride my bicycle, I like to ride my bike

Over at the 23b hackerspace a few people were having trouble finding a good bike cargo rack that wasn’t overpriced. They built their own with $30 in materials and a salvaged milk crate. It looks great and is most likely a lot more durable than the Walmart model.

If that cargo rack fell off, it would look like this

Apparently you can get ‘spark cartridges’ to attach to the underside of a skateboard. [Jim] saw these would look really cool attached to his bike so he did the next best thing. He attached them to his sandals. It does look cool…

Less heat, less noise

[YO2LDK] picked up a TV tuner dongle for software radio and found it overheated and stopped working after about 15 minutes (Romanian, Google Translate). He hacked up a heat sink from an old video card to solve this problem. Bonus: the noise was reduced by a few tenths of a dB.

Exercise Bike Actuates Your Download Speeds; Messes With Music Playback

We’re not featuring this project because it involves the tiniest exercise bike in the world. It’s on the front page because the speed-control features which this dynamic duo added are hilarious. They call it the Webcycle and it’s actually two hacks in one.

Way back in 2009 [Matt Gray] and [Tom Scott] slapped an Arduino on the bike and used it to measure the revolutions of the cranks (how fast your feet are going in circles). This was hooked up to the laptop which is fastened to the handlebars. This way you can surf the Internet while you work out, but the bandwidth is directly affected by pedal speed. If you want to watch video you’re going to have to sweat…. a lot. Check it out in the clip after the break.

This March they pulled the Webcycle out of storage so that it may ride again. This time it’s connected to the sound system in their exercise room. A record player motor is the victim in this case. You guessed it — pedal speed dictates the rate of the turntable, modulating the pitch drastically. Make sure the boss isn’t around when you watch this clip because it will be hard not to guffaw.

These guys really have fun with this hacks. It was [Tom’s] birthday that prompted that hacktacular mini golf course.

Continue reading “Exercise Bike Actuates Your Download Speeds; Messes With Music Playback”

Pedal-powered 32-core ARM Linux Server

Sure, it’s probably a gimmick to [Jon Masters], but we absolutely love the pedal-powered server he built using a group of ARM chips. [Jon] is an engineer at Red Hat and put together  the project in order to show off the potential of the low-power ARM offerings.

The platform is a quad-core Calxeda EnergyCore ARM SoC. Each chip draws only 5 Watts at full load, with eight chips weighing in at just 40 Watts. The circuit to power the server started as a solar charger, which was easy to convert just by transitioning from panels to a generator that works just like a bicycle trainer (the rear wheel presses against a spin wheel which drives the generator shaft).

So, the bicycle generator powers the solar charger, which is connected to an inverter that feeds a UPS. After reading the article and watching the video after the break we’re a bit confused on the actual setup. We would think that the inverter would feed the charger but that doesn’t seem to be the case here. If you can provide some clarity on how the system is connected please feel free to do so in the comments.

Continue reading “Pedal-powered 32-core ARM Linux Server”

Electric Bike (earplugs Not Included)

It’s obvious this bike has some extra parts. But look closely and you’ll see the chainring has no chain connecting to it. Pedaling will get you nowhere since [PJ Allen] rerouted the chain in order to drive this bicycle using an electric motor.

He’s got beefy motor which pulls 350 Watts at 24 Volts. For speed control he opted to use an Arduino, pumping out PWM signals to some MOSFETs. This results in an incredibly noisy setup, as you can hear in the bench test video after the break. But once this is installed on the bike it doesn’t quiet down at all. You can hear the thing a block away.

The original road test fried the first set of 7A MOSFETs when trying to start the motor from a standstill. It sounds like the 40A replacements he chose did the trick through. We didn’t see any information on the battery life, but if he runs out of juice on the other side of town we bet he’ll be wishing he had left the chain connected to the crankset.

Continue reading “Electric Bike (earplugs Not Included)”

Self Balancer Does It Differently Than We’re Used To Seeing

This self balancing robot still uses just two wheels, but it’s balancing very differently than we’re used to seeing. Where most of the projects use a form factor that’s similar to a Segway, this works just like a bicycle. But it doesn’t need to keep the front and rear wheels spinning to stay upright. In fact, the video after the break shows it balancing perfectly while at a complete standstill. [Aoki2001’s] creation isn’t stuck in one place. He included distance sensors on the front and back which are used to move the bike as if by repulsion.

The large wheel where the rider would be is what makes sure the vehicle doesn’t topple over. It acts as an inverted pendulum, pushing against the large wheel’s inertia by rotating the motor to which it is attached. The same concept was seen back in march on a full-sized bike. But why use two wheels when you only need one? His unicycle version can also be seen embedded after the break.

It’s worth looking at [Aoki’s] other YouTube offerings too. He’s got a small robot which balances on top of a ball. It’s the desk-sized version of this hack.

Continue reading “Self Balancer Does It Differently Than We’re Used To Seeing”