Exercise Bike Hacked As Input For Xbox 360

If you like playing Grand Theft Auto, you’re pretty familiar with squeezing the triggers for accelerating and braking while driving around. [David Programa] decided this was too easy, and instead developed a system to allow him to pedal his way around the virtual world.

The device relies on a flywheel-based exercise bike, with six magnets placed on the flywheel that triggers a reed switch six times per rotation. The extra magnets give the system better resolution at slow speeds. A Hall Effect sensor would be a more reliable way to build this to survive in the long term, but the reed switch does work. It’s paired with a debounce circuit to keep the output clean. A Raspberry Pi is pressed into service, running a Python program to read a GPIO pin activated by the reed switch, counting pulses to determine the speed of pedalling.

The trigger control used in the Xbox 360 controller is a potentiometer that creates varying voltages depending on its position, allowing it to act as an analog accelerator input. 0 volts corresponds to no input, while the trigger reads 3.3 volts when fully depressed. The Raspberry Pi emulates this with its PWM output, paired with a low-pass filter to create the relevant voltage to inject into the trigger input on a generic Xbox 360 controller.

While it’s a lot less practical than simply using a regular controller, the pedal controls do allow you to get a great workout while playing Grand Theft Auto. Some of the more intense chase missions should be a great way to get your heart rate up, and that’s got to be a good thing.

Ironically, though, the system only works for cars and motorbikes in game. The bicycles in Grand Theft Auto are controlled by mashing the A button instead. Alternatively, you might consider a similar system for playing Mario Kart on the Nintendo Switch. Video after the break.

Continue reading “Exercise Bike Hacked As Input For Xbox 360”

This ESP32 Bluetooth Page Turner Can’t Get Any Easier

Commercial Bluetooth pedals, designed to allow musicians to flip pages of sheet music on a tablet, have the sort of inflated price tag you’d expect for a niche electronic device. Rather than forking as much as $100 USD over for the privilege of hands-free page flipping, [Joonas Pihlajamaa] decided to build his own extremely low cost version using an ESP32 and a cheap foot pedal switch.

In terms of hardware, it does’t get much easier than this. All [Joonas] had to do was hook the pedal up to one of the ESP32’s digital pins, and plug the microcontroller into a USB power bank. From there, it became a software project. With the ESP32-BLE-Keyboard library, it only took a few lines of code to send RIGHT_ARROW or LEFT_ARROW depending on whether the pedal was quickly tapped or held down for a bit; allowing him to navigate back and forth through the pages with just one button.

[Joonas] mentions that the ESP32 development board he’s using is too large to fit inside the pedal itself, though we wonder if the bare module could get slipped in there someplace. Of course you could always build your own pedal with a bit of extra room to fit the electronics, but for less than $2 USD on AliExpress, it’s hard to go wrong with this turn-key unit.

Looking for an alternate approach? We covered a Bluetooth page turner last month that doubled the inputs and packed it all into a handsome wooden enclosure.

Continue reading “This ESP32 Bluetooth Page Turner Can’t Get Any Easier”

An Easy DIY Pedal Set For Racing Sims

The racing sim scene has always had a strong DIY subculture, as enthusiasts seeking the most realistic-feeling peripherals set out to modify off-the-shelf offerings for greater authenticity. Others go further and craft their own builds from the ground up. [ilge] has done just that, putting together his own set of pedals for sim racing.

The build relies primarily on 3D printed components, with a few springs and some nuts and bolts to hold everything together. Gear teeth on the pedal arms interface with matching gears mounted on potentiometers. These are then wired into an Arduino Pro Micro, which reads the individual pots via analog inputs and then acts as a USB Human Interface Device to the computer.

[ilge] tests the setup with a variety of games, including the popular Euro Truck Simulator and iRacing. It’s a great cheap way to get started with a pedal set for a sim rig. From here, the sky really is the limit; we’d love to see an upgraded version with a load-cell on the brake for better pedal feel. We’d be surprised if an H-shifter isn’t in the works, too. Video after the break.

Continue reading “An Easy DIY Pedal Set For Racing Sims”

Page-Turning Pedal Is Pretty Boss

Buying things to make your life easier certainly has its therapeutic joys, but if you really wanna feel good, you gotta make the thing yourself whenever possible. [Bjørn Brandal] happened to have a two-switch BOSS pedal just lying around, so it made sense to turn it into a wireless page turner for reading sheet music.

As [Bjørn] says, the circuit is simple — just two 1/4″ TRS jacks and an ItsyBitsy nRF52840 Express. The jacks are used to connect to the pedal outputs to the ItsyBitsy, which sends keystrokes over BLE.

The cool thing about this pedal is that it can work with a bunch of programs, like forScore, Abelton Live, Garage Band, and more. The different modes are accessed by holding down both pedals, and there’s confirmation via blinking LED and buzzing buzzer.

Our favorite part has to be the DIY light guide [Bjørn] that bends the ItsyBitsy’s RGB LED 90° and points it out the front of the enclosure. Nicely done!

Don’t play anything but the computer keyboard? Put those feet to work with shortcuts behind giant arcade buttons.

Push Pedal For Privacy

Many of us in the secret Hackaday lair use gaming hardware at our work desks because it is reliable and performs well. We are not alone, and maybe you are reading this on your coffee break over a 20-button mouse. We wager that [Thiago Ribeiro de Azeredo] has this mindset because he converted some old analog gaming pedals into teleconferencing tools for his home office. Now that he is not racing to the office, he has to take a lot of computer calls, and he must quickly and covertly mute his microphone when his howling son tries to take the stage.

The pedals were gathering dust when he started working from home, but they are unretired for the upgrade. Inside, there is no mystery, just a couple of spring-loaded variable resistors, so he adds an Arduino Nano a couple of 4.7 kΩ resistors to create a voltage divider. The Nano doesn’t have native Human Interface Device (HID) functionality, so a Python script receives the serial port signals and toggles an application bar notification so he can see the microphone status. With two pedals, he can press-to-talk or lock his microphone on and off. We have to wonder, did he write the software during a meeting?

We love the idea of controlling our battle stations with our feet or seeing a bunch of RGB keyboards used as a low-res display.

PiFX, The Pi-Powered Pedal Board

Since the beginnings of the Raspberry Pi, [Tibbbbz] has wanted to build a DIY guitar effects board and amp simulator. A device like this, and similar ones sold by Boss and Kemper, put a bunch of processing power inside a metal enclosure with some footswitches and a pair of quarter inch jacks for input and output. Mash some buttons and wicked toanz come out the other end. Now this is actually possible with a Pi, and it’ll sound great too.

Because this is an audio application, latency is critical. It doesn’t really matter if you have 200 milliseconds of latency when scrolling through your Facebook feed, but for real-time audio processing anything over five milliseconds is disorienting and nearly unusable. [Tibbbbz] is using a standard, off-the-shelf USB audio adapter that gets the latency down to about that level. A Raspberry Pi is never going to have latency as low as a handful of transistors in a analog effects pedal, but it’s close enough.

For the audio system, it’s all about JACK audio: a wonderful frontend for the Linux audio system. The actual pedal emulation is happening with Guitarix. For the hardware part of this build, there’s actually not that much going on here apart from a USB sound card and a touch screen display. The footswitches are the most interesting as they’re wired up as buttons in a repurposed USB keyboard controller board. This repurposing of a USB keyboard is rather interesting, because it vastly simplifies the entire build. All of this is wrapped up in a wedge-shaped walnut pedalboard that’s sturdy enough to live on the stage at least part of the time. You can check out the demos here.

This Is The Delay Pedal You Can Build Yourself

If you’re looking to make money in electronics, there’s no better market than guitar pedals and modular synths. The margins are high, and all the consumers are otakus who will spend outrageous amounts of money chasing the next big thing. The products are just one step above audiophile wank with zero oxygen cables, and if your opamp sounds ‘more transparent’, you’re going to make a fortune, never mind how something can sound more transparent, whatever that is to begin with.

If you want to do something really cool, build a delay, because everyone needs another delay. If you want to build the latest in delay technology, just grab a PT2399 chip. That’s what ElectroSmash did with their Open Source Time Manipulator delay. Everything’s right there, all the parts of the circuits are described, and you too can become an effects pedal engineer.

This pedal is based on the PT2399 chip from Princeton Technology, a digital delay chip that can be used with something that sounds like an old-school bucket brigade chip or something resembling a tape echo. As a digital chip, you’ve also got the clean, clear sounds of a digital delay, with just a few tweaks of the circuit. We’ve taken a look at the PT2399 before, but surprisingly not many people are sharing their secrets.

The circuit for the ElectroSmash Time Manipulator is built around the ATMega328, the same chip in the Arduino Uno, with two PT2399s that can be configured to operate in serial or parallel for everything from a slapback echo to a 600ms digital delay. If you set everything right, you can get choruses, reverbs, or some psychobilly flange-ish sounds.

The entire circuit is open, with a board designed in KiCad, the code is right there written in C, and the only hard-to-replicate tech is the PT2399 chip itself, which can be had from the usual vendors for less than a dollar a piece. It’s a great pedal, and be sure to check out the video below.

Continue reading “This Is The Delay Pedal You Can Build Yourself”