Cheap 3D Printers Make Cheaper(er) Bioprinters

In case you missed it, prices on 3D printers have hit an all time low. The hardware is largely standardized and the software is almost exclusively open source, so it makes sense that eventually somebody was going to start knocking these things out cheap. There are now many 3D printers available for less than $300 USD, and a few are even dipping under the $200 mark. Realistically, this is about as cheap as these machines are ever going to get.

A startup by the name of 3D Cultures has recently started capitalizing on the availability of these inexpensive high-precision three dimensional motion platforms by co-opting an existing consumer 3D printer to deliver their Tissue Scribe bioprinter. Some may call this cheating, but we see it for what it really is: a huge savings in cost and R&D time. Why design your own kinematics when somebody else has already done it for you?

Despite the C-3PO level of disguise that 3D Cultures attempted by putting stickers over the original logo, the donor machine for the Tissue Scribe is very obviously a Monoprice Select Mini, the undisputed king of beginner printers. The big change of course comes from the removal of the extruder and hotend, which has been replaced with an apparatus that can heat and depress a standard syringe.

At the very basic level, bioprinting is performed in the exact same way as normal 3D printing; it’s merely a difference in materials. While 3D printing uses molten plastic, bioprinting is done with organic materials like algae or collagen. In the Tissue Scribe, the traditional 3D printer hotend has been replaced with a syringe full of the organic material to be printed which is slowly pushed down by a NEMA 17 stepper motor and 8mm leadscrew.

The hotend heating element and thermistor that once were used to melt plastic are still here, but now handle warming the metal frame used to hold the syringe. In theory these changes would have only required some tweaks to the firmware calibration to get working. Frankly, it makes perfect sense, and is certainly a much easier to pull off than some of the earlier attempts at homebrew biological printers we’ve seen.

We won’t comment on the Tissue Scribe’s price point of $999 USD except to say that in the field of bioprinters, that’s pocket change. Still, it seems inevitable that somebody will build and document their own bolt-on biological extruder now that 3D Cultures has shown how simple it really is, so they may find themselves undercut in the near future.

If all this talk of hot extruded collagen has got you interested, we’ve seen some excellent resources on the emerging field of bioprinting that will probably be right up your alley.

Continue reading “Cheap 3D Printers Make Cheaper(er) Bioprinters”

Growing Algae For Fun And Profit

Supposedly, writes [Severin], algae is a super food, can be used as biofuel, and even be made into yoga mats. So he’s built an algal reactor at Munich Maker Lab, to try to achieve a decent algal yield.

You might expect that  sourcing live algae would be as simple as scraping up a bit of green slime from a nearby pond, but that yields an uncertain mix of species. [Severin] wanted Chlorella algae for his experiment because its high fat content makes it suitable for biodiesel experiments, so had to source his culture from an aquatic shop.

The reactor takes the form of a spiral of transparent plastic tube surrounding a CFL lamp as a light source, all mounted on a lasercut wooden enclosure housing a pump. A separate glass jar forms a reservoir for the algal-rich water. He does not mention whether or not he adds any nutrient to the mix.

Left to its own devices the machine seems to work rather well, a 48 hour session yielding an impressively green algal soup. Sustained running does cause a problem though, the pipes block up with accumulated algae and the machine needs cleaning by blasting it with high pressure water and a healthy dose of nuts and bolts.

This isn’t the first algal reactor we’ve featured here on Hackaday, we had this Arduino-powered one back in 2009. But mostly the algae that have appeared here have been of the bioluminescent variety, as with this teaching project, or this night light.

Living night light with glowing algae

I may sound like I’m being over enthusiastic in this video. I’m not. Everyone who has seen this thinks it is simply amazing.

My father, an ex navy man, has told me stories of glowing water since I was little.  Being a person who was obsessed with all things that light up, this always stuck with me. I saw a headline one day that someone was making an algae-light. Sadly when I clicked on it, the algae was just there to create oxygen. It was a cool idea, but not what I was hoping for.

That slight disappointment drove me to create a night light using glowing algae. The process could be extremely simple.

1. Buy Algae.

2. set up light for algae (it needs a 12 hour light cycle and putting it in a window sill would kill it due to heat). It needs bulbs labelled 6500k or higher.

3. shake algae at night (it only lights up when agitated, and when it is on its “night” cycle).

I really wanted to add more to this project though, so I decided to put the algae in a klein bottle and build a custom base for it that would allow me to move a BB around inside the bottle using magnets. This would in turn, hopefully, agitate the algae and make it light up.

Continue reading “Living night light with glowing algae”

Growing algae with an Arduino

algae_grow

We’ve seen automated grow boxes of all shapes and sizes, but all were for growing plants. [Jared] over at Inventgeek wanted to do something similar for his algae. He started off with an Arduino-based solution that allows the controlled pulse of LEDs connected to his standard bioreactor as a prototype. Once he determined his proof of concept worked, he began work on a design based on the Arduino Pro Mini that has more advanced features such as temperature monitoring and algae culture density monitoring via some fancy IR voodoo. The code is open source and the hardware is easily obtainable, all that remains is the desire to grow algae.