Remoticon 2021 // Joey Castillo Teaches Old LCDs New Tricks

Segmented liquid crystal displays are considered quite an old and archaic display technology these days. They’re perhaps most familiar to us from their use in calculators and watches, where they still find regular application. [Joey Castillo] decided that he could get more out of these displays with a little tinkering, and rocked up to Remoticon 2021 to share his findings.

[Joey’s] talk is a great way to learn the skills needed to reverse engineer a typical segment LCD.
[Joey] got his start hacking on these displays via his Sensor Watch project –  a board swap for the venerable Casio F-91W wristwatch, with the project now available on CrowdSupply. It kits out the 33-year-old watch design with a modern, low-power ARM Cortex M0+ microcontroller running at 32 MHz that completely revolutionizes what the watch can do. Most importantly, however, it repurposes the watches original segmented monochrome LCD.

Segment LCDs are usually small monochrome devices made out of glass, that have the benefit of using very little power in their operation. They come with a fixed layout, which cannot be changed – so they’re often designed specifically for a given purpose. A calculator will have segments laid out to display numbers, often in the usual 7-segment fashion, while a watch may add dedicated segments for displaying things like “AM,” “PM,” or “ALARM.” Continue reading “Remoticon 2021 // Joey Castillo Teaches Old LCDs New Tricks”

Wristwatch PCB Swaps Must Be In The Air

Are we seeing more wristwatch PCB swapping projects because more people are working on them, or because we saw one and they’re on our mind? The world may never know, but when it comes to design constraints, there’s a pretty fun challenge here both in fitting your electronic wizardry inside the confines of an injection molded case, and in the power budget to make your creation run on a sippy straw of battery power.

Just this morning we came across [Joey Castillo’s] sensor-watch project. He chose the Casio F-91W as the donor wristwatch. It’s got that classic Casio look of a segment LCD display capable of displaying hours, minutes, and seconds, as well as day and date. But the added bonus is that we know these have decent water resistance while still providing three buttons for user input. Sure, it’s less buttons than the pink calculator watch we saw [Dave Darko] working on earlier in the week, but which would you trust in the pool?

Replacement PCB sized to use the same battery contact and CR2016 for power [via @josecastillo]
We see that [Joey] also chose to use the ATSAML22 microcontroller and sheds some light on why: it includes a built-in segment LCD controller! If you’re a peripheral geek like us, you can read about the SLCD controller on page 924 of the datasheet (PDF), it’s a whole datasheet onto itself.

The sensor part of the sensor-watch is a flex PCB breakout that allows you to swap in whatever sensor fits your needs. The first to be reflowed at [Joey’s] bench is a BME280 humidity sensor, which is most obviously useful for the included temperature measurements, but maybe it could also alarm at moisture ingress? [Joey] says you can swap in other parts as long as they’re in the QFN or LGA size range. We think an IMU is in order since there’s a lot of fun interaction there like the watch reacting to being positioned in front of your face, or to take tap-based inputs.

We think beginning with a donor watch is brilliant since pulling off a case, especially one that keeps water out, is 97% of the battle. But when your UI is unique to the watch world, sometimes you need to start from scratch like this wooden word clock wristwatch.

Casio F-91W, Going Dark

The Casio F-91W is easily one of the most iconic and popular watches worldwide. But what’s cool about having the same exact thing as millions of other people? Not much, unless of course you modify it to make it your own. That’s exactly what [Gautchh] did to their beloved watch. Between permanent dark mode, stereo blue LED backlights, and a new strap, this timepiece really stands out from the crowd.

Once [Gautchh] got the watch open, the first order of business was to re-polarize the LCD with a different film so the digits are light and the background is dark. This watch ships with a single green backlight LED that’s fairly faint, so [Gautchh] upgraded it to bright blue and added a second 1206 LED in parallel on the other side of the readout. Finally, they replaced the rubber strap with something less likely to chafe.

We think dark mode looks great, though [Gautchh] says it requires a little bit of training to hold your wrist just right to make it readable. They make these mods look easy, but they likely aren’t for the faint of heart. If you want to give it a shot, there are good step-by-step instructions and several pictures to help out.

We’ve seen a lot of Casio F-91W projects over the years, including a method for waterproofing the internals. If you have a lot of love for this watch, why not make a giant version?

See This Casio? Watch It Unlock My Tesla!

The whole point of gaining the remote unlock ability for our cars was to keep us from suffering the indignity of standing there in the rain, working a key into the lock while the groceries get soaked. [Mattia Dal Ben] reports that even Teslas get the blues and don’t unlock reliably all the time, in spite of the price tag.

[Mattia] decided that a spare key card might be good to have around, and that building it into his Casio F-91W watch would put the key as close at hand as it could be without getting an implant.

After programming a new J3A040-CL key card to match the car, getting the chip out was the easy part — just soak it in acetone until you can peel the layers apart. Then [Mattia] built a fresh antenna for it and wound it around the inside of a 3D printed back plate.

The hardest part seems to be the tuning the watch antenna to the resonant frequency expected by the car-side antenna. [Mattia] found that a lot of things mess with the resonant frequency — the watch PCB, casing, and even the tiny screws holding the thing together each threw it off a little bit.

Since the watch is less comfortable now, [Mattia] thought about making a new back from transparent resin, which sounds lovely to us. It looks as though the new plan is to move it to the front of the watch, with a resin window to show off the chip. That sounds pretty good, too. Check out the secret unlocking power after the break.

Casio watches are great, though we are more into the calculator models. Someone out there loves their F-91W so much that they made a giant wall clock version.

Continue reading “See This Casio? Watch It Unlock My Tesla!”

Waterproofing The Best Watch Ever Made

The Casio F-91W is probably the most popular wristwatch ever made. It’s been in production forever, it’s been worn by presidents, and according to US Army intelligence it is “the sign of al-Qaeda”. There’s a lot of history in this classic watch. That said, there is exactly one problem with this watch: it’s barely water resistant. [David] thought he had a solution to this problem, and it looks like he may have succeeded. This classic watch is now waterproof, down to 700 meters of depth. If you’re ever 700 meters underwater, you have bigger problems than a watch that isn’t waterproof.

The basic idea of this hack is to replace the air inside the watch with a liquid. This serves two purposes: first, the front glass won’t fog up. Second, liquids are generally incompressible, or at least only slightly compressible. By replacing the air in the watch with mineral oil, the watch is significantly more water resistant.

Filling a watch with mineral oil is done simply by disassembling the watch, submerging it in a dish of mineral oil, and carefully reassembling the watch. Does it work? Don’t know about this watch, but this was done to another classic Casio watch and tested to 1200 psi. That’s a kilometer underwater, and the watch still worked afterward. We’ll take that as a success, although again if you’re ever a kilometer underwater, you have bigger problems than a broken watch.