A Look Under The Hood Of Intermediate Frequency Transformers

If you’ve been tearing electronic devices apart for long enough, you’ll know that the old gear had just as many mysteries within as the newer stuff. The parts back then were bigger, of course, but often just as inscrutable as the SMD parts that populate boards today. And the one part that always baffled us back in the days of transistor radios and personal cassette players was those little silver boxes with a hole in the top and the colorful plug with an inviting screwdriver slot.

We’re talking about subminiature intermediate-frequency transformers, of course, and while we knew their purpose in general terms back then and never to fiddle with them, we never really bothered to look inside one. This teardown of various IF transformers by [Unrelated Activities] makes up somewhat for that shameful lack of curiosity. The video lacks narration, relying on captions to get the point across that these once-ubiquitous components were a pretty diverse lot despite their outward similarities. Most had a metal shell protecting a form around which one or more coils of fine magnet wire were wrapped. Some had tiny capacitors wired in parallel with one of the coils, too.

Perhaps the most obvious feature of these IF transformers was their tunability, thanks to a ferrite cup or slug around the central core and coils. The threaded slug allowed the inductance of the system to be changed with the turn of a screwdriver, preferably a plastic one. [Unrelated] demonstrates this with a NanoVNA using a nominal 10.7-MHz IFT, probably from an FM receiver. The transformer was tunable over a 4-MHz range.

Sure, IFTs like these are still made, and they’re not that hard to find if you know where to look. But they are certainly less common than they used to be, and seeing what’s under the hood scratches an itch we didn’t even realize we had.

Continue reading “A Look Under The Hood Of Intermediate Frequency Transformers”

Don’t Let The Baluns Float Over Your Head

Most ham radio operators will build an antenna of some sort when they first start listening or transmitting, whether it’s a simple dipole, a beam antenna like a Yagi, or even just a random wire vertical antenna. All of these will need to be connected feedline of some sort, and in the likely event you reach for some 50-ohm coax cable you’ll also need a balun to reduce noise or unwanted radiation. Don’t be afraid of extra expenses when getting into this hobby, though, as [W6NBC] demonstrates how to construct an “ugly balun” out of the coax wire itself (PDF).

The main purpose of a balun, a contraction of “balanced-unbalanced” is to convert an unbalanced transmission line to a balanced one. However, as [W6NBC] explains, this explanation obscures much of what baluns are actually doing. In reality, they take a three-wire system (the coax) and convert it to a two-wire system (the antenna), which keeps all of the electrical noise and current on the shield wire of the coax from interfering with the desirable RF on the interior of the coax.

This might seem somewhat confusing on the surface, as coax wires only have a center conductor and a shield wire, but thanks to the skin effect which drives currents to the outside of the conductor, the shield wire effectively becomes two conductors when taking into account its inner and outer surfaces. At these high frequencies the balun is acting as a choke which keeps these two high-frequency conductors separate from one another, and keeps all the noise on the outside of the shield wire and out of the transmitter or receiver.

Granted, the world of high-frequency radio circuits can get quite complex and counter-intuitive and, as we’ve shown before, can behave quite unexpectedly when compared to DC or even mains-frequency AC. But a proper understanding of baluns and other types of transformers and the ways they interact with RF can be a powerful tool to have. We’eve even seen other hams use specialty transformers like these to make antennas out of random lengths and shapes of wire.

Continue reading “Don’t Let The Baluns Float Over Your Head”

Homebrew Coil Winder Makes Toroids A Snap To Wind

Anyone who has ever wound a toroidal coil by hand can tell you that it’s not exactly a fun job. Even with the kinds of coils used in chokes and transformers for ham radio, which generally have relatively few windings, passing all that wire through the toroid time after time is a pain. And woe unto anyone who guesses wrong on how much wire the job will take.

To solve those problems, [Sandeep] came up with this clever and effective toroid winder. The idea is to pass a small spool of magnet wire through the toroid’s core while simultaneously rotating the toroid to spread the windings out as evenly as possible. That obviously requires a winding ring that can be opened up to allow the toroid form to be inserted; [Sandeep] chose to make his winding ring out of plywood with a slit in it. Carrying the wire spool, the winding ring rotates on a C-shaped fixture that brackets the toroid, which itself rotates under stepper motor control on a trio of rollers. An Arduino controls the rotation of both motors, controlling the number of windings and their spread on the form. lacking a ferrite core for testing, [Sandeep] used a plywood ring as a stand-in, but the results are satisfying enough to make any manual coil-winder envious.

We love tools like this that make a boring job a snap. Whether it’s cutting wires for wiring harnesses or winding guitar pickups, tools like these are well worth the time spent to build them. But we suppose when it comes to toroid winding, one could always cheat.

Continue reading “Homebrew Coil Winder Makes Toroids A Snap To Wind”

A Practical Look At Chokes For EMI Control

Radio frequency electronics can seem like a black art even to those who intentionally delve into the field. But woe betide the poor soul who only incidentally has to deal with it, such as when seeking to minimize electromagnetic interference. This primer on how RF chokes work to reduce EMI is a great way to get explain the theory from a practical, results-oriented standpoint.

As a hobby machinist and builder of machine tools, [James Clough] has come across plenty of cases where EMI has reared its ugly head. Variable frequency drives are one place where EMI can cause problems, and chokes on the motor phase outputs are generally prescribed. He used an expensive choke marketed as specific for VFD applications on one of his machines, but wondered if a cheap ferrite core would do the job just as well, and set to find out.

A sweep of some ferrite cores with a borrowed vector network analyzer proved unsatisfying, so [James] set up a simple experiment with a function generator and an oscilloscope. His demo shows how the impedance of a choke increases with the frequency of the test signal, which is exactly the behavior that you’d want in a VFD – pass the relatively low-frequency phase signals while blocking the high-frequency EMI. For good measure, he throws a capacitor in parallel to the choke and shows how much better a low-pass filter that makes.

We love demos like this that don’t just scratch an intellectual itch but also have a practical goal. [James] not only showed that (at least in some cases) a $13 ferrite can do the same job as a $130 VFD choke, but he showed how they work. It’s basic stuff, but it’s what you need to know to move on to more advanced RF filter designs.

Continue reading “A Practical Look At Chokes For EMI Control”

The RFI Hunter: Looking For Noise In All The Wrong Places

Next time you get a new device and excitedly unwrap its little poly-wrapped power supply, remember this: for every switch-mode power supply you plug in, an amateur radio operator sheds a tear. A noisy, broadband, harmonic-laden tear.

The degree to which this fact disturbs you very much depends upon which side of the mic you’re on, but radio-frequency interference, or RFI, is something we should all at least be aware of. [Josh (KI6NAZ)] is keenly aware of RFI in his ham shack, but rather than curse the ever-rising noise floor he’s come up with some helpful tips for hunting down and eliminating it – or at least reducing its impact.

Attacking the problem begins with locating the sources of RFI, for which [Josh] used the classic “one-circuit-at-a-time” approach – kill every breaker in the panel and monitor the noise floor while flipping each breaker back on. This should at least give you a rough idea of where the offending devices are in your house. From there, [Josh] used a small shortwave receiver to locate problem areas, like the refrigerator, the clothes dryer, and his shack PC. The family flat-screen TV proved to be quite noisy too. Remediation techniques include wrapping every power cord and cable around toroids or clamping ferrite cores around them, both on the offending devices and in the shack. He even went so far as to add a line filter to the dryer to clamp down on its unwanted interference.

Judging by his waterfall displays, [Josh]’s efforts paid off, bringing his noise floor down from S5 to S1 or so. It’s too bad he had to take matters into his own hands – it’s not like the FCC and other spectrum watchdogs don’t know there’s a problem, after all.

Continue reading “The RFI Hunter: Looking For Noise In All The Wrong Places”

Printed Motorcycle Choke Lever Goes The Distance

We all dread the day that our favorite piece of hardware becomes so old that spare parts are no longer available for it, something about facing that mechanical mortality sends a little shiver up the hacker’s spine. But on the other hand, the day you can’t get replacement hardware is also the same day you have a valid excuse to make your own parts.

3D rendering above the 2D scan

That’s the situation [Jonathan] found himself in when the choke lever for his Suzuki motorcycle broke. New parts aren’t made for his bike anymore, which gave him the opportunity to fire up Fusion 360 and see if he couldn’t design a replacement using a 2D scan of what was left of the original part.

[Jonathan] put the original part on his flatbed scanner as well one of his credit cards to use for a reference point to scale the image when he imported it into Fusion 360. Using a 2D scanner to get a jump-start on your 3D model is a neat trick when working on replacement parts, and one we don’t see as much as you might think. A proper 3D scanner is cool and all, but certainly not required when replicating hardware like this.

The choke lever is a rather complex shape, one of those geometries that doesn’t really have a good printing orientation because there are overhangs all over the place. That combined with the fact that [Jonathan] printed at .3mm layer height for speed gives the final part an admittedly rough look, but it works. The part was supposed to be a prototype before he reprinted it at higher resolution and potentially with a stronger material like PETG, but after two years the prototype is still installed and working fine. This isn’t the first time we’ve seen a “temporary” 3D printed part become a long-term solution.


This is an entry in Hackaday’s

Repairs You Can Print contest

The twenty best projects will receive $100 in Tindie credit, and for the best projects by a Student or Organization, we’ve got two brand-new Prusa i3 MK3 printers. With a printer like that, you’ll be breaking stuff around the house just to have an excuse to make replacement parts.