Repairs You Can Print Contest: Meet the Winners

Six weeks ago, we asked you to show us your best 3D printed repairs for a chance to win $100 in Tindie credit and other prizes. You answered the call with fixes for everything from the stuff everyone has, like zippers and remotes, to the more obscure stuff, like amazing microscopes scavenged from dumpsters.

It was hard to whittle down the entries we received into the top 20 because you came up with so many awesome fixes. A few of them had us thinking hard about the definition of repair, but are brilliant in their own way.

So without further ado, we are pleased to announce the winners of our Repairs You Can Print contest. We also want to give honorable mention to those projects that wowed us with ingenuity.

Continue reading “Repairs You Can Print Contest: Meet the Winners”

Repairs You Can Print: Nintendo DS Lite With New Battery And Case

The problem with hanging on to old consumer products is that the original batteries no longer hold a charge. To make matters worse, replacement batteries ordered online have likely been sitting on a warehouse shelf for years and are no better. [Larry G] faced this issue with his old Nintendo DS Lite. Luckily he remembered a hack from his youth where a friend’s Dad had duct-taped a massive alkaline D-cell battery pack to the back of a Gameboy to give it a longer life. And so [Larry] gave new life to his Nintendo DS Lite by designing and 3D printing a case for a battery with an even larger capacity than the original.

He first obtained a 2400 mAh 18650 lithium-ion cell, one with over voltage and under voltage protection. With that as a guide, he designed and 3D printed a case for it made up of four printed parts. The case was needed because the 18650 doesn’t fit in the NDS Lite’s battery compartment. Instead, one of the parts, which he calls the fake battery, fits in the compartment and has copper strips glued to it for connecting to the NDS Lite. From there, wires go to another part wherein sits the 18650. The remaining parts secure it all in place.  Charging is done using the NDS Lite’s built-in charger. Even though the new case adds significant bulk, it actually fits well in the hand.

No doubt many of you have your own old NDS Lite sitting around that can benefit from this repair. The project details and STL files can be found on his page using the above link.

This is also [Larry]’s entry for our Repairs You Can Print contest which puts him in the running for one of two Prusa i3 Mk3s plus the multi-material upgrade.

Repairs You Can Print: A Turn Signal Switch For A Chevy Corvair

Running a classic car is often an easier prospect than a more recent model, as the mechanical parts have a tendency towards commonality between models, simplicity, and maintenance using basic tools. However assuming some level of parts availability for your model it is not usually the running gear that causes headaches. Instead, it is the smaller and less durable parts, the little plastic pieces that formed vital components but have not been manufactured for decades. These are the parts for which the advent of accessible 3D printing has been a revelation, suddenly the owner of a wreck need only to have basic CAD skills to deliver the goods.

A Chevy Corvair (not [Ken]'s one). Greg Gjerdingen [CC BY 2.0].
A Chevy Corvair like [Ken’s]. Greg Gjerdingen [CC BY 2.0].
[Ken] has a ’63 Chevy Corvair, an attractively-styled motor notable for its rear-engined layout and air-cooled engine. And it seems his car is plagued by the same issue as all other early models, a failure of its turn signal mechanism. The version fitted to later cars is a vastly superior replacement, but required some modification to fit his ’63 model. Even after modifcation, the updated part had a plastic component that was too long for his steering wheel. Would he grind down the later part to fit, or go with a later wheel? No, he turned to Google Sketchup, and 3D printed a replacement of the correct size. He does admit that it’s not perfect as the signals cancel at a slightly different point from where they should, but since he’s been using it for four years it appears to have done the job.

We wish [Ken] every success with his Corvair, and indeed can’t help envying him a little for owning it. Some of us have been known to dabble in older metal, too.

This is an entry in Hackaday’s

Repairs You Can Print contest

The twenty best projects will receive $100 in Tindie credit, and for the best projects by a Student or Organization, we’ve got two brand-new Prusa i3 MK3 printers. With a printer like that, you’ll be breaking stuff around the house just to have an excuse to make replacement parts.


Repairs You Can Print: Better Cable Splicing With 3D Printed Parts

A while back, [Marius] was faced with a problem. A friend of his lives in the middle of a rainforest, and a microphone was attacked by a dirty, greasy rat. The cable was gnawed in half, and with it went a vital means of communication with the outside world. The usual way of fixing a five- or six-conductor cable is with heat shrink, lineman’s splices, insulating tape, and luck. [Marius] needed something better than that, so he turned to his 3D printer and crafted his own wire splice enclosure.

The microphone in question is a fancy Jenal jobbie with a half-dozen or so conductors in the cable. A junction box was the obvious solution to this problem, and a few prototypes, ranging from rectangular to fancy oval boxes embossed with a logo were spat out on a 3D printer. These junction boxes have holes on either end, and when the cable ends are threaded through these holes, the wires can be spliced, soldered, and insulated from each other.

This microphone had to hold up to the rigors of the rainforest and rats, so [Marius] had to include some provisions for waterproofing. This came in the form of a hot glue gun; just fill the junction box with melted hot glue, pop the cover on, and just wait for it to cool. Like all good repairs, it works, and by the time this repair finally gives out, something else in the microphone is sure to go bad.

It’s a great repair, and an excellent example of how a 3D printer can make repairs easy, simple, cheap, and almost as good as the stock part. You can check out a few videos of the repair below.

Continue reading “Repairs You Can Print: Better Cable Splicing With 3D Printed Parts”

Printed Motorcycle Choke Lever Goes the Distance

We all dread the day that our favorite piece of hardware becomes so old that spare parts are no longer available for it, something about facing that mechanical mortality sends a little shiver up the hacker’s spine. But on the other hand, the day you can’t get replacement hardware is also the same day you have a valid excuse to make your own parts.

3D rendering above the 2D scan

That’s the situation [Jonathan] found himself in when the choke lever for his Suzuki motorcycle broke. New parts aren’t made for his bike anymore, which gave him the opportunity to fire up Fusion 360 and see if he couldn’t design a replacement using a 2D scan of what was left of the original part.

[Jonathan] put the original part on his flatbed scanner as well one of his credit cards to use for a reference point to scale the image when he imported it into Fusion 360. Using a 2D scanner to get a jump-start on your 3D model is a neat trick when working on replacement parts, and one we don’t see as much as you might think. A proper 3D scanner is cool and all, but certainly not required when replicating hardware like this.

The choke lever is a rather complex shape, one of those geometries that doesn’t really have a good printing orientation because there are overhangs all over the place. That combined with the fact that [Jonathan] printed at .3mm layer height for speed gives the final part an admittedly rough look, but it works. The part was supposed to be a prototype before he reprinted it at higher resolution and potentially with a stronger material like PETG, but after two years the prototype is still installed and working fine. This isn’t the first time we’ve seen a “temporary” 3D printed part become a long-term solution.

This is an entry in Hackaday’s

Repairs You Can Print contest

The twenty best projects will receive $100 in Tindie credit, and for the best projects by a Student or Organization, we’ve got two brand-new Prusa i3 MK3 printers. With a printer like that, you’ll be breaking stuff around the house just to have an excuse to make replacement parts.


Repairs You Can Print: Fixing Pegboard Clips That Break Too Easily

Right now, we’re running the Repairs You Can Print Contest, where one lucky student and one lucky organization will win the fancy-schmancy Prusa i3 MK3, with the neato multi-extrusion upgrade. [Budiul] is a student, so he figured he would repair something with a 3D printer. Lucky for him, the pegboard in his workshop was completely terrible, or at least the pegboard hooks were. These hooks were made out of PVC, and after time, more and more hooks broke. The solution? Print his own, and make them stronger in the process.

[Budiul] started his fix by taking the remaining, unbroken hooks on his pegboard wall organizer and measuring the relevant dimensions. These were modeled in Creo 4.0, printed out, and tested to fit. After many errors and failed models, he finally got a 3D printable version of his plastic pegboard hooks.

Of course, replacing PVC pegboard hooks with ABS hooks really isn’t that great of a solution. To fix this problem of plastic pegboard hooks for good, he printed the hooks in halves, with a channel running down the middle. This channel was filled with some steel wire and acetone welded together. The result is a fantastically strong pegboard hook that will hold up to the rigors of holding up some tools.

While printing out pegboard hooks might not seem like the greatest use of time, there are a few things going for this hack. Firstly, these aren’t the pegboard hooks made out of steel rod we all know and love; this is some sort of weird proprietary system that uses plastic molded hooks. If they’re made out of plastic anyway, you might as well print them. Secondly, being able to print your own pegboard hooks is a severely underrated capability. If you’ve ever tried to organize a workbench, you’ll know that you’ll never be able to find the right hook for the right spot. There is, apparently, a mystical superposition of pegboard hooks somewhere in the universe.

This is a great hack, and a great entry for the Repairs You Can Print contest. You can check out a video of the hack below.

Continue reading “Repairs You Can Print: Fixing Pegboard Clips That Break Too Easily”

The Most Utilitarian 3D Print Has the Widest Reach

3D Printing is often heralded as a completely new fabrication method, creating things that simply cannot be manufactured in other ways. While this is true, the widest reaching usefulness of 3D printers isn’t for pushing the limits of fabrication. The real power is in pushing the limits of manufacturing for individuals who need one-off parts.

The proof point is in the story shown above. A missing key on a keyboard could have meant an otherwise fine piece of hardware headed for recycling, but was saved by a single part printed on a desktop 3D printer. Multiply this by the increasing number of people who have access to these printers and you can see how using 3D printing for repairs will have a huge impact on keeping our gear in service longer.

We want to see how you’ve saved things from the rubbish pile. Show them off in Hackaday’s Repairs You Can Print contest. The best Student entry and the best Organization entry (think Hackerspace) will each win a high-end 3D Printer. But anyone can enter, with the top twenty entries receiving $100 credit for Tindie.

If you’re like us though, these prizes are just icing on the cake. The real reward is showing what some think is mundane but the Hackaday crowd believes is worth celebrating. Check out all the entries so far and join us below for a few highlights.

Continue reading “The Most Utilitarian 3D Print Has the Widest Reach”