Clock-of-Clocks Adds Light-Pipe Hands For Beauty And Function

We’ve gotten used to seeing “meta clocks,” clocks that use an array of analog clock faces and piece together characters using the hands of the clocks. They’re very clever, and we always like to see them, especially when they come with detailed build instructions like this one does.

What’s also nice about [Erich Styger]’s “MetaClockClock” display is the twist on the original concept. Where most clock-of-clocks depend on the contrast between the hands and the faces of the analog movements, [Erich] added light to the mix. Hidden inside the bezel of each clock is a strip of RGB LEDs; coupled with the clear acrylic hands of the clock, which act as light pipes, each clock can contribute different shapes of different colors to the display. Each clock is built around a dual-shaft stepper motor of the kind used in car dashboard gauges; the motors each live on a custom PCB, while the LEDs are mounted on a ring-shaped PCB of their own. Twenty-four of the clocks are mounted in a very nice walnut panel, which works really well with the light-pipe hands. The video below shows just some of the display possibilities.

[Erich] has documented his build process in extreme detail, and has all the design files up on GitHub. We won’t say that recreating his build will be easy — there are a lot of skills needed here, from electronics to woodworking — but at least all the information is there. We think this is a beautiful upgrade to [Erich]’s earlier version, and we’d love to see more of these built.

Continue reading “Clock-of-Clocks Adds Light-Pipe Hands For Beauty And Function”

Circle Full Of LEDs Becomes A Clock

Building a clock of some sorts seems to be a time honored tradition for hackers and LED clocks seem one of the most popular. You can build anything from a seven-segment display to a binary clock or something even more fancy. [Clueless] found a circle of LED rings online and with made an LED version of an analog clock.

Continue reading “Circle Full Of LEDs Becomes A Clock”

Tuning Fork Keeps This Throwback Digital Clock Ticking

Whatever kind of clock you’re interested in building, you’re going to need to build an oscillator of some sort. Whether it be a pendulum, a balance wheel, or the atomic transitions of cesium or rubidium, something needs to go back and forth in a predictable way to form the timebase of the clock. And while it might not make the best timepiece in the world, a tuning fork certainly fits the bill and makes for a pretty interesting clock build.

One of the nice things about this build is that [Kris Slyka] got their inspiration from a tuning fork clock that we covered a while back — we love it when someone takes a cool concept and makes it their own. While both clocks use a 440 Hz tuning fork — that’s an A above middle C for the musically inclined — [Kris] changed up the excitation method for their build. She used a pair of off-the-shelf inductors, placed near the ends of each arm and bridged by a strong neodymium magnet to both sense the 440-Hz vibrations and to provide the kick needed to keep the fork vibrating.

As for the aesthetic of the build, we think [Kris] really nailed it. Using through-hole components, old-school seven-segment displays, and a home-etched PCB, she was able to capture a retro look that really works. The RS-232 port and the bell jar enclosure complete the feel, although we’re not sure about the custom character set [Kris] designed — it’s cool and all, but makes it hard for anyone else to read without a little practice. Regardless, this is a fun build, and we’d imagine the continuous tone coming from the clock is pretty pleasing.

Continue reading “Tuning Fork Keeps This Throwback Digital Clock Ticking”

This Classy But Chaotic Gear Clock Keeps You Guessing

There are a lot of ways to tell time, but pretty much all of them involve some sort of sequential scale — the hands sweeping across the face of an analog clock comes to mind, as does the incremental changes of a digital clock. Clocks are predictable by their very nature, and therefore somewhat boring.

This nonsequential gear clock aims to break that predictability and make for a timepiece that’s just a little bit different. It’s the work of [Tony Goacher], who clearly put a lot of work into it and pulled out nearly every tool in the shop while doing it. He started with a laser-cut plywood prototype to get the basics worked out — a pair of nested rings with internal gear teeth, each hanging on a stepper-driven pinion. The inner ring represents hours and the outer minutes, with the numbers on each randomly distributed — more or less, since no two sequential numbers are positioned more than five seconds of rotation apart.

The finished version of the clock is rendered in brass, acrylic, hardwood, and a smattering of aluminum, with a case reminiscent of the cathedral radios of yore. There are some really nice touches, like custom-made brass screws, a CNC-engraved brass faceplate with traditional clock art, and a Latin inscription on the drive cog for the hours ring that translates roughly to “Time rules all.” When we looked that up we found that “tempus rerum imperator” is the motto of the Worshipful Company of Clockmakers, the very existence of which we find pleasing in the extreme.

The clock runs through its initialization routine in the brief video below. We’re not sure we’d want this on our nightstand, but it’s certainly a unique and enjoyable way to show the passage of time. It sort of reminds us of this three-ringed perpetual calendar, but just a bit more stochastic.

Continue reading “This Classy But Chaotic Gear Clock Keeps You Guessing”

Proto-TV Tech Lies Behind This POV Clock

If it weren’t for persistence of vision, that quirk of biochemically mediated vision, life would be pretty boring. No movies, no TV — nothing but reality, the beauty of nature, and live performances to keep us entertained. Sounds dreadful.

We jest, of course, but POV is behind many cool hacks, one of which is [Joe]’s neat Nipkow disk clock. If you think you’ve never heard of such a thing, you’re probably wrong; Nipkow disks, named after their 19th-century inventor Paul Gottlieb Nipkow, were the central idea behind the earliest attempts at mechanically scanned television. Nipkow disks have a series of evenly spaced, spirally arranged holes that appear to scan across a fixed area when rotated. When placed between a lens and a photosensor, a rudimentary TV camera can be made.

For his Nipkow clock, though, [Joe] turned the idea around and placed a light source behind the rotating disk. Controlling when and what color the LEDs in the array are illuminated relative to the position of the disk determines which pixels are illuminated. [Joe]’s clock uses two LED arrays to double the size of the display area, and a disk with rectangular apertures. The resulting pixels are somewhat keystone-shaped, but it doesn’t really distract from the look of the display. The video below shows the build process and the finished clock in action.

The key to getting the look right in a display like this is the code, and [Joe] put in a considerable effort for his software. If only the early mechanical TV tinkerers had had such help. [Jenny List] did a nice write-up on the early TV pioneers and their Nipkow disk cameras; we’ve also seen other Nipkow displays before, but [Joe]’s clock takes the concept to another level.

Continue reading “Proto-TV Tech Lies Behind This POV Clock”

A Not-So-Alarming Clock

By and large, alarm clocks (including phones that double as alarm clocks) are annoyingly alarming. If it’s not the light or the sound, it’s both. Yes, we know that’s the point of an alarm clock, but sometimes life presents opportunities to check the time and/or the weather and sleep in a little bit longer based on the result. We don’t know about you, but loud noises and eye-blasting light are not conducive to getting back to sleep, especially if you’re a light sleeper.

In [Stavros Korokithakis]’ case, if it’s a tennis practice morning but it’s raining, then it’s no longer a tennis practice morning and he can go back to sleep for a while. A phone seems perfect for this, but the problem is that it provides too much information: the phone can’t check the weather without the internet, and once it has internet access, a bunch of eye-opening notifications come flooding in.

[Stavros] had a long list of must-haves when it came to building the ultimate alarm clock, and we can totally get behind that. He needed something smarter than the average off-the-shelf clock radio, but nothing too smart. Enter the ESP8266. As long as it has an internet connection, it can fetch the time and the weather, which is really all that [Stavros] needs. It gets the current temperature, wind speed, and forecast for the next two hours with the OpenWeather API, and this information is converted to icons that are easy to read at a sleepy, one-eyed glance at the OLED.

Adaptive brightness was high on the list of must-haves, which [Stavros] solved by adding a photoresistor to judge the ambient light and adjust the OLED screen brightness appropriately. And he really did think of everything — the octagonal shape allows for the perfect angle for reading from bed. There’s just one problem — it can’t accept input, so it doesn’t actually function as an alarm clock. But it makes a damn good bedside clock if you ask us.

If you really want to start the morning right, use a winch to yank the covers off of you.

Via Adafruit

Mechanical Timekeeping Hack Chat With Clickspring

Join us on Wednesday, February 3 at noon Pacific for the Mechanical Timekeeping Hack Chat with Clickspring!

The reckoning of the passage of time has been of vital importance to humans pretty much for all our history, but for most of that time we were stuck looking at the movements of heavenly bodies or noting the changing of the seasons to answer questions of time. The search for mechanical aids to mark the passage of time began surprisingly early, though, pretty much from the time our ancestors first learned to work with metals.

Timekeeping devices were often created to please a potentate or to satisfy a religious imperative, but whatever the reason for their invention, these early clocks and calendars were key to a ton of discoveries. Timekeeping devices were among the first precision mechanisms, and as such formed the basis of much of our mechanical world. A mechanical representation of the passage of time also gave us some of the first precise observations of the physical world, which led to an enormous number of discoveries about the nature of the universe, not to mention practical skills such as navigation, which allowed us to explore the world with greater confidence.

In our era, precision timekeeping has moved beyond the mechanical realm into the subatomic world, and mechanisms built to please a prince are relegated to museums and collectors. That’s not to say there isn’t plenty to learn from the building of mechanical timepieces, as anyone who has watched any of the videos on Clickspring’s YouTube channel can attest. Clickspring not only makes some magnificent modern timepieces, like his famous open-frame clock, but recently he’s also branched out into the timekeeping mechanisms of the ancients. He built a reproduction Byzantine sundial-calendar, and tackled a reproduction of the famous Antikythera mechanism. The latter was undertaken using only the tools and materials that would have been available to the original maker. That led to an unexpected discovery and a detour into the world of scholarly publishing.

Clickspring has been busy lately, but he made some time to stop by the Hack Chat and talk about mechanical timepieces. We’ll talk about his modern builds, his forays into the mechanisms of antiquity, and his serendipitous discovery. On the way we’re likely to talk about what it takes to build precision mechanisms in a small shop, and whatever else that crops up.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 3 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Mechanical Timekeeping Hack Chat With Clickspring”