You Could Be Relatively Cooler In Diamond-Coated Clothing

We vaguely remember what we believe was a DuPont commercial in the late ’80s or early ’90s touting that one day, they would make clothing that could cool you. And sure, there is clothing that allows heat to escape — fishnet shirts come to mind most immediately — but a group of scientists at Australia’s RMIT University have applied a coating of nanodiamonds to cotton in order to make fabric that goes a step further, drawing heat away from the body.

While you may be picturing blinged-out blouses, the truth is that nanodiamonds are cheap and non-glittery. They bear the same carbon-lattice structure as regular diamonds, which gives them great thermal conductivity.

In order to create cooling fabric, the scientists combined nanodiamond powder with polyurethane and a solvent, and applied the solution to one side of a sheet of cotton via electrospinning. This technique uses electric force to spin charged threads up into the diameters of fiber. The other side was left uncoated so that it doesn’t draw in heat.

Studies showed that the treated samples released 2 to 3 ºC (3.6 to 5.4 ºF) more heat via the coated side throughout the cooling period. While a couple of degrees may not seem like much, it could mean the difference between using a fan or using an air conditioner to cool off further.

Another application could be to keep buildings from overheating. We’ve seen developments in that area, usually in the form of ultra-white paint.

How Does A Sewing Machine Sew?

Like all Hackaday readers, we pride ourselves on having at least a passing acquaintance with how most things work. But we suspect to a lot of people, things we take for granted — computers, air conditioning, motors, and cell phones — are just black magic. That’s how we feel about sewing machines. Sure, there’s a motor. There’s a needle and some thread. But how does the machine make a stitch? We always wondered, but after watching a recent video from [Veritasium] we can at least claim we have an idea.

First, he shows the intrinsic problem: sewing by hand requires you to reverse the direction of the needle, and it isn’t clear how to make a simple machine to do that. Sure, today you could probably make a robot that sews like a human does, but sewing machines have been around for a very long time.

In addition to showing how a chain stitch and lock stitch work, the video shows the history of the machines, including 50,000-year-old needles and the progression of innovations required to get to the modern sewing machine. In addition, he shows a large model sewing machine to clearly explain the concepts.

You might think you don’t care about sewing, but machine sewing has touched nearly everyone. The video says that in 1900, a family might spend 15% of their income on clothes. In 2003, that number drops to under 4%, yet the family will have many more clothes than they did in 1900. This is possible because of machine sewing and other innovations.

You can, of course, make your own sewing machine. If you want to get an industrial one, we have some advice.

Continue reading “How Does A Sewing Machine Sew?”

Circumvent Facial Recognition With Yarn

Knitwear can protect you from a winter chill, but what if it could keep you safe from the prying eyes of Big Brother as well? [Ottilia Westerlund] decided to put her knitting skills to the test for this anti-surveillance sweater.

[Westerlund] explains that “yarn is a programable material” containing FOR loops and other similar programming concepts transmitted as knitting patterns. In the video (after the break) she also explores the history of knitting in espionage using steganography embedded in socks and other knitwear to pass intelligence in unobtrusive ways. This lead to the restriction of shipping handmade knit goods in WWII by the UK government.

Back in the modern day, [Westerlund] took the Hyperface pattern developed by the Adam Harvey and turned it into a knitting pattern. Designed to circumvent detection by Viola-Jones based facial detection systems, the pattern presents a computer vision system with a number of “faces” to distract it from covered human faces in an image. While the knitted jumper (sweater for us Americans) can confuse certain face detection systems, [Westerlund] crushes our hope of a fuzzy revolution by saying that it is unsuccessful against the increasingly prevalent neural network-based facial detection systems creeping on our day-to-day activities.

The knitting pattern is available if you want to try your hands at it, but [Westerlund] warns it’s a bit of a pain to actually implement. If you want to try knitting and tech mashup, check out this knitting clock or this software to turn 3D models into knitting patterns.

Continue reading “Circumvent Facial Recognition With Yarn”

Remoticon Video: How To 3D Print Onto Fabric With Billie Ruben

We’re impressed to see the continued flow of new and interesting ways to utilize 3D printing despite its years in the hacker limelight. At the 2020 Hackaday Remoticon [Billie Ruben] came to us from across the sea to demonstrate how to use 3D printing and fabric, or other flexible materials, to fabricate new and interesting creations. Check out her workshop below, and read on for more detail about what you’ll find.

The workshop is divided into two parts, a hands-on portion where participants execute a fabric print at home on their own printer, and a lecture while the printers whirr away describing ways this technique can be used to produce strong, flexible structures.

The technique described in the hands on portion can be clumsily summarized as “print a few layers, add the flexible material, then resume the printing process”. Of course the actual explanation and discussion of how to know when to insert the material, configure your slicer, and select material is significantly more complex! For the entire process make sure to follow along with [Billie]’s clear instructions in the video.

The lecture portion of the workshop was a whirlwind tour of the ways which embedded materials can be used to enhance your prints. The most glamourous examples might be printing scales, spikes, and other accoutrement for cosplay, but beyond that it has a variety of other uses both practical and fashionable. Embedded fabric can add composite strength to large structural elements, durable flexibility to a living hinge, or a substrate for new kinds of jewelry. [Billie] has deep experience in this realm and she brings it to bear in a comprehensive exposition of the possibilities. We’re looking forward to seeing a flurry of new composite prints!

Dyeing Fabric To Create Sensors

Fabrics with electrical functionality have been around for several years, but are very rarely used in mainstream clothing. The fabrics are very expensive and the supply can be unreliable. Frustrated by this, [Counter Chemists] developed PolySense, simple open-source technology to make any fibrous material into a conductive material that can be used to sense pressure, stretch, capacitive touch, humidity, or temperature.

PolySense uses a process called in-situ polymerization, effectively dying a fabric to become piezoelectric. This is done by first soaking the fabric in a mixture of water and the organic compound pyrrole, and then adding iron chloride to trigger a reaction. The polymerization process that takes place wraps the individual fibers of the fabric in conductive polymer chains.

Instead of just uniformly coating a fabric, various masking techniques can be used to dye patterns onto the fabric for various use cases. The video after the break shows a range of these applications, including using polymerized gloves and leggings for motion capture, a zipper that acts like a linear potentiometer, and touch-sensitive fabric. The project page lists sources for the required chemicals in both Europe and the US, and we look forward to seeing what other applications the community can come up with.

The project is very well documented, with a number of scientific papers covering all the details. [Counter Chemists] will also be presenting PolySense at the 2020 Virtual Maker Faire.

This technology can also be used to make a fabric piano with a lot less effort. On the more mechanical side of things, you can also 3D print on pre-stretched fabric to make it pop into 3D shapes.

Continue reading “Dyeing Fabric To Create Sensors”

Stylish Outfit Packs A Solar Charging Rig

Being out and about with your devices rapidly running out of battery power can rapidly turn into a sticky situation. Suddenly you find yourself unable to hail rideshares and incapable of transferring money around. For the fashion conscious who wish to avoid this, [Kitty Yeung]’s design may be a valuable addition to their summer closet.

The project starts with [Kitty] sewing an elegant bodice and shorts out of a silky silver material. This fabric tends to fray when cut, so fabric glue and iron-on tape was used to protect the edges. This also makes sure the garment doesn’t fall to pieces when washed or worn often. Ribbons, pockets, and other features were designed into the garments to integrate them with hardware to enable the garments to act as a portable charging solution. 3D-printed brackets are affixed to the shoulders, holding a solar panel in an upward-facing angle to catch a good amount of sun. The panel chosen integrates circuitry to output a nice, clean 5V output for charging devices over USB.

It’s a fashionable outfit that also packs useful hardware, and we agree with [Kitty] that it really would be perfect for Burning Man. The cone hat was a nice touch, too. It’s not the first time we’ve heard from [Kitty] either – she appeared as a speaker at 2018’s Hackaday Superconference, too!

Kitty Yeung On Tech-Fashion Designs And The Wearables Industry

If there is a field which has promise verging on a true breakout, it is that of wearable electronics. We regularly see 3D printing, retrocomputing, robotics, lasers, and electric vehicle projects whose advances are immediately obvious. These are all exciting fields in which the Hackaday community continually push the boundaries, and from which come the astounding pieces of work you read on these pages daily. Of course the projects that merge textiles and electronics are pushing boundaries in the same way, except for that it’s often not obvious at first glance. Why is that?

Wearables are a field in which hard work and ingenuity abound, but pulling off the projects that stand out and go beyond mere ordinary garments adorned with a few twinkly LEDs or EL wire is hard. Wearables have a sense of either still seeking its killer application or its technological enabler, and it was this topic that physicist, textilist, and artist Kitty Yeung touched upon in her talk at the recent Hackaday Superconference.

Continue reading “Kitty Yeung On Tech-Fashion Designs And The Wearables Industry”