Coin Cell Hacks That Won The Coin Cell Challenge

It’s amazing what creative projects show up if you give one simple constraint. In this case, we asked what cool things can be done if powered by one coin cell battery and we had about one hundred answers come back. Today we’re happy to announce the winners of the Coin Cell Challenge.

Continue reading “Coin Cell Hacks That Won The Coin Cell Challenge”

Hackaday Links Column Banner

Hackaday Links: January 7, 2018

Whelp, Spectre and Meltdown are the tech news du jour right now, and everyone is wondering: what is the effect of this problem on real hardware in real server rooms? Epic Games patched their machines and found something shocking. The CPU utilization for one of their online services increased about 100%. We don’t know what this server is doing, or what this process is, but the Spectre and Meltdown patches will increase CPU load depending on the actual code running. This is bad for Epic — they now have to buy an entirely new server farm. This is doubly bad for Intel, and there is speculation of a class action suit floating around the darker corners of the Interwebs.

It is with a heavy heart that I must report the passing of John Young, the only person to have commanded four different classes of spacecraft (five if you include the lunar rover), including the first launch of the Space Shuttle. He was, simply, the most badass astronaut to ever live. Need proof of that? His heart rate during the launch of a Saturn V was seventy.

By the time this post is published, you’ll have less than twenty-four hours to submit your project to the Coin Cell Challenge. Get to it!

A short reminder that Shmoocon is a mere two weeks away. What is Shmoocon? A totally chill cyber/sec/hacker con at the Washington D.C. Hilton (yes, where Reagan was shot). We’ll be there, and we’re looking for some like-minded Hackaday peeps to chill out with. Want a meetup? Reply in the comments.

A few years ago, the ESP8266 appeared out of the blue in a few Chinese reseller’s web shops, and everything has been gravy since. Now there’s a new magic do-everything chip appearing on AliExpress and Taobao. It’s the RDA5981, a chip with an ARM Cortex M4 core, 32Mbit of Flash, 192k or user RAM, b/g/n WiFi, I2S, and enough peripherals to be useful. Given the support for a MIC, line in, MP3, WAV, WMA and AAC, it appears this is an all-in-one chip designed for Bluetooth speakers or some other audio application. You can find modules on Alibaba and a few breakout boards on Taobao.

According to my sources (the press releases that somehow slipped through the ‘CES’ filter on my email), the world’s fastest, smallest, biggest, least expensive, and newest drone is set to be unveiled at CES in Vegas this week.

Welding Batteries With Batteries

Welding equipment is always expensive and bulky, right? Heavens no! [Jaromir Sukuba] is making a welder for battery tabs which can fit in a pocket and gets its power from a coin cell. It may be expensive to power compared to a mains welder, but for the sake of portability this is quite the hack. Not only that, but it uses 555 timers in the charging circuit.

His entry for the 2017 Coin Cell Challenge saps every bit of power from a coin cell and stores it up in a 100F supercapacitor bank. All that stored energy takes a long time to get into the supercapacitors but it comes out in a flash. In fact, it can take 12 hours to fully charge. For the convenience of size, we have to trade the convenience of speed. This should be a strong contestant for the Supernova and Heavy Lifting categories.

We see a quick demonstration of a successfully welded tab which shows that using coin cells to weld metal to coin cells is equally ironic and apropos. Other welders on Hackaday feature a quicker way to control your battery tab welding, safety-rich spot welding, or just go off the rails completely and use an arc welder to make a coil gun.

Coin Cell Powered Sea Turtle Research

Hacking and tinkering are always fun and games, but one just has to appreciate when all efforts are additionally aimed towards doing something good. [Nikos] sets an example by combining his interest in technology with his passion for wildlife conservation by creating a low cost and ultra-low power temperature logger — and he is using a coin cell for it.

As the founder of a sea turtle conservation project in Greece, [Nikos] enjoys building scientific instruments that help him and his team on their mission. With a goal to log the temperature every 10 minutes over a period of at least 180 days, he designed a PCB just big enough to hold a CR2032 coin cell. Fifty of them will eventually be sealed in waterproof enclosures, and buried in the sand for the whole research duration.

Limiting the design to its bare necessities, the rest of the PCB is housing a digital temperature sensor, an SPI EEPROM to hold all the recorded sensor values over those 180 days, and an ATmega328PB clocked by a 32.768kHz crystal. Wondering what to do with all the extra, unused pins of the ATmega, [Nikos] simply routed them to be accessible through pin headers, thus turning the data logger alternatively into a coin cell powered development board.

Assuming your logging interval requirements are significantly lower, you might be thrilled to hear that [Nikos] estimates a theoretical 7+ years an average coin cell could power the data logger in sleep mode, which makes him confident to reach the 180 days goal.

This Coin Cell Can Move That Train!

[Mike Rigsby] has moved a train with a coin cell. A CR2477 cell to be exact, which is to say one of the slightly more chunky examples, and the train in question isn’t the full size variety but a model railroad surrounding a Christmas tree, but nevertheless, the train moved.

A coin cell on its own will not move a model locomotive designed to run on twelve volts. So [Mark] used a boost converter to turn three volts into twelve. The coin cell has a high internal resistance, though, so first the coin cell was discharged into a couple of supercapacitors which would feed the boost converter. As his supercaps were charging, he meticulously logged the voltage over time, and found that the first one took 18 hours to charge while the second required 51 hours.

This is important and useful data for entrants to our Coin Cell Challenge, several of whom are also going for a supercap approach to provide a one-off power boost. We suspect though that he might have drawn a little more from the cell, had he selected a dedicated supercap charger circuit.

Continue reading “This Coin Cell Can Move That Train!”

The Tiniest Of 555 Pianos

The 555 timer is one of that special club of integrated circuits that has achieved silicon immortality. Despite its advanced age and having had its functionality replicated and superceded in almost every way, it remains in production and is still extremely popular because it’s simply so useful. If you are of A Certain Age a 555 might well have been the first integrated circuit you touched, and in turn there is a very good chance that your project with it would have been a simple electric organ.

If you’d like to relive that project, perhaps [Alexander Ryzhkov] has the answer with his 555 piano. It’s an entry in our coin cell challenge, and thus uses a CMOS low voltage 555 rather than the power-hungry original, but it’s every bit the classic 555 oscillator with a switchable resistor ladder you know and love.

Physically the piano is a tiny PCB with surface-mount components and physical buttons rather than the stylus organs of yore, but as you can see in the video below the break it remains playable. We said it was tiny, but some might also use tinny.

Continue reading “The Tiniest Of 555 Pianos”

How Mini Can A Mini Lamp Be?

If there is one constant in the world of making things at the bench, it is that there is never enough light. With halogen lamps, LEDs, fluorescent tubes, and more, there will still be moments when the odd tiny part slips from view in the gloom.

It’s fair to say that [OddDavis]’ articulated mini lamp will not provide all the solutions to your inadequate lighting woes, as its lighting element is a rather humble example of a white LED and not the retina-searing chip you might expect. The lamp is, after all, an entry in our coin cell challenge, so it hardly has a huge power source to depend upon.

What makes this lamp build neat is its 3D-printed articulated chassis. It won’t replace your treasured Anglepoise just yet, but it might make an acceptable alternative to that cheap IKEA desk lamp. With the coin cell LED you’d be hard pressed to use it for much more than reading even with its aluminium foil reflector, but given a more substantial lighting element it could also become a handy work light.

If 3D printed articulated lamps are your thing, take a look at this rather more sophisticated example.