Trying To Shatter The World’s Fastest RC Car Record

The RC car is controlled via an FPV setup. (Credit: Luke Bell, YouTube)

Fresh off a world record for the fastest quadcopter, [Luke Bell] decided to try his luck with something more own to earth, namely trying to tackle the world record for the fastest RC car, with the current record set at 360 km/h. Starting off with a first attempt in what will be a video series, the obvious approach seems to be to get some really powerful electric motors, a streamlined body and a disused runway to send said RC car hurtling along towards that golden medal. Of course, if it was that easy, others would have done it already.

With the quadcopter record of nearly 500 km/h which we covered previously, the challenge was in a way easier, as other than air resistance and accidental lithobraking there are no worries about ground texture, tire wear or boundary layer aerodynamics. In comparison, the RC car has to contend with all of these, with the runway’s rough tarmac surface being just one of the issues, along with making sure that the wheels would hold up to the required rotation speed. For the wheels you got options like foam, hard rubber, etc., all with their own advantages and disadvantages, mostly in terms of grip and reliability.

So far speeds of over 200 km/h are easy enough to do, with foam wheels being the preferred option. To push the RC car to 300 km/h and beyond, a lot more experimentation and trial runs will have to be performed. Pending are changes to the aerodynamic design with features also commonly seen in F1 race cars such as downforce spoilers, diffusers and other tricks which should prevent the RC car from (briefly) becoming an RC airplane.

Continue reading “Trying To Shatter The World’s Fastest RC Car Record”

Fastest FPV drone, pending official confirmation. (Credit: Luke Maximo Bell)

Got To Go Fast: The Rise Of Super-Fast FPV Drones

Generally when one considers quadcopter drones, the term ‘fast’ doesn’t come to mind, but with the rise of FPV  (First Person View) drones, they have increasingly been designed to go as fast as possible. This can be for competitive reasons, to dodge enemy fire on a battlefield, or in the case of [Luke Maximo Bell] to break the world speed record. Over the course of months he set out to design the fastest FPV drone, involving multiple prototypes, many test runs and one failed official speed run.

The components of the third FPV drone attempt, as used with the world record attempt. (Credit: Luke Maximo Bell)
The components of the third FPV drone attempt, as used with the world record attempt. (Credit: Luke Maximo Bell)

The basic design of these designed-for-speed FPV drones is more reminiscent of a rocket than a quadcopter, with the upside-down propellers  requiring the operator first lifting the drone into the air from an elevated position. After this the drone transitions into a level flight profile by rotating with the propellers pointing to the back. This gives the maximum thrust, while the body provides lift.

Although this seems simple, flying this type of drone is very hard, as it’s hard to tell what is happening, even when landing. [Luke] ended up installing a camera in the nose which can rotate to provide him with different angles. Tweaking the flight computer to deal with the control issues that occur at speeds above 300 km/h.

Continue reading “Got To Go Fast: The Rise Of Super-Fast FPV Drones”

Watching The Watchers: Are You The Star Of An Encrypted Drone Video Stream?

Small aircraft with streaming video cameras are now widely available, for better or worse. Making eyes in the sky so accessible has resulted in interesting footage that would have been prohibitively expensive to capture a few years ago, but this new creative frontier also has a dark side when used to violate privacy. Those who are covering their tracks by encrypting their video transmission should know researchers at Ben-Gurion University of the Negev demonstrated such protection can be breached.

The BGU team proved that a side-channel analysis can be done against behavior common to video compression algorithms, as certain changes in video input would result in detectable bitrate changes to the output stream. By controlling a target’s visual appearance to trigger these changes, a correlating change in bandwidth consumption would reveal the target’s presence in an encrypted video stream.

Continue reading “Watching The Watchers: Are You The Star Of An Encrypted Drone Video Stream?”

Solar FPV Plane Flies Forever

We love solar power. Not only is it environmentally friendly, but it’s relatively lightweight and involves fragile high technology. Just the sort of thing that we’d want to strap onto the wings of a large model aircraft.

Solar power on a remote-controlled plane would get you unlimited cruising range. Now, a normal land-and-swap-battery process might be good enough for some people, but judging from [Prometreus]’s YouTube channel, he’s a fan of long flights over the Alps, and of pushing long-distance FPV links to the breaking point. For him and his friends, the battery power is definitely the limiting factor in how far / long he can fly.

solar-powered-plane-_-drone-_-fpv-_-built-_-rc-aircraft-rmkpjbf6dnqmkv-shot0012

All of the information we have is in the video, but that’s plenty. [Prometreus] didn’t bother with maximum-power-point tracking, but instead wired up his solar cells to work just about right for the voltage of his batteries and the level of sun that he’s seeing. So it won’t work nearly as well on cloudy days. (Check out this MPPT build that was submitted for the Hackaday Prize.)

He could switch the solar cells in an out remotely, and it’s pretty gratifying to see the consumed current in the battery go down below zero. In the end, he lands with a full battery. How cool is that?

Continue reading “Solar FPV Plane Flies Forever”

drone racers

The Shady World Of Drone Racing

No one noticed the two men in the alley as the darkness of midnight approached – their long, black trench coats acting like a soldier’s camouflage.

“You got the goods?”

“Yeah, these are hot man…super fast..check this…”

The bark of a police siren broke their whispered conversation like a shattering glass, causing the two men to briefly freeze in their steps.

“Johnny B. got busted last week…did you hear?”

“No way man! What he get busted for?”

“Drone racing man…drone racing.”

Deep within the shadows of abandoned warehouses and dilapidated factories on the outskirts of Australian suburbia, the telltale buzz of numerous drones can be heard. Zipping to and fro at speeds upwards of 60km/h, these drones are not just flying. They’re racing each other. The operators use specialized FPV goggles that allow them to see the raceway in real time. This method, unfortunately, puts them on the wrong side of the law.

The dated laws governing drones in Australia are similar to those in the US, which were written for the radio controlled plane industry. While they technically forbid any flying outside of line-of-site, the Australian Civil Aviation Authority seems to be OK with the drone racing so long as it’s done indoors and poses no risk to people or property.

Know of any drone racing in your country? Is it legal? Do people do it anyway? Let us know in the comments.

Wifibroadcast Makes WiFi FPV Video More Like Analog

Normal WiFi is not what you want to send video from your quadcopter back to the first-person-view (FPV) goggles strapped on your head, because it’s designed for 100% correct, two-way transmission of data between just two radios. Transmission of analog video signals, on the other hand, is lossy, one-way, and one-to-many, which is why the longer-range FPV flights all tend to use old-school analog video transmission.

When you’re near the edge of your radios’ range, you care much more about getting any image in a timely fashion than about getting the entire video sequence correctly after a delay. While WiFi is retransmitting packets and your video is buffering, your quadcopter is crashing, and you don’t need every video frame to be perfect in order to get an idea of how to save it. And finally, it’s just a lot easier to optimize both ends of a one-way transmission system than it is to build antennas that must receive and transmit symmetrically.

And that’s why [Befinitiv] wrote wifibroadcast: to give his WiFi FPV video system some of the virtues of analog broadcast.

Continue reading “Wifibroadcast Makes WiFi FPV Video More Like Analog”

DIY FPV Goggles

DIY FPV Goggles Born From Necessity Of Cheapness

So now that you’ve built your quadcopter and can fly it without crashing most of the time, what’s next? How about metaphorically hopping into the pilot’s seat with a First Person View setup. Great idea… but the cost of the required gear can be a deal breaker. FPV goggles alone range from the low to high hundreds. [sneaky] was using his laptop screen for his FPV setup and decided to try to make is own FPV goggles.

The display is just a small LCD screen that was purchased off eBay. Craft foam board was cut, bent, glued and duct taped to form a box about the same size as the LCD screen which is also secured to the box with duct tape. [sneaky] then cut the opposite side of the box to fit his face before he lined it with 1/2″ weatherstripping foam. Staring at an LCD screen just inches from your face is sure to cause some discomfort. A Fresnel lens inserted in between the user’s eyes and the LCD reduces eye strain to make long flights tolerable. The whole assembly is then held to your noggin via a recycled ski goggle strap.

In the end, [sneaky] likes his new goggles better than his old laptop screen and sun shade setup. The goggles aren’t too heavy and he can wear them comfortably for a while. We’ve seen a DIY FPV goggle setup in the past that uses individual lenses for each eye rather than one large Fresnel lens.