Your Phone Is Now Helping To Detect Earthquakes

Most people’s personal experience with seismographs begins and ends with simple childhood science experiments. Watching a pendulum make erratic marks on a piece of paper while your classmates banged on the table gave you an idea on how the device worked, and there’s an excellent chance that’s the last time you gave the concept much thought. Even among hackers, whose gear in general tends to be more technologically equipped than the norm, you’re unlikely to find a dedicated seismograph up and running.

But that’s not because the core technology is hard to come by or particularly expensive. In fact, one could say with almost absolute certainty that if you aren’t actively reading these words on a device with a sensitive accelerometer onboard, you have one (or perhaps several) within arm’s reach. Modern smartphones, tablets, and even some laptops, now pack in sensors that could easily be pushed into service as broad strokes seismometers; they just need the software to collect and analyze the data.

Or at least, they did. By the time you read this article, Google will have already started rolling out an update to Android devices which will allow them to use their onboard sensors to detect possible earthquakes. With literally billions of compatible devices in operation all over the planet, this will easily become the largest distributed sensor network of its type ever put into operation. But that doesn’t mean you’re going to be getting a notification on your phone to duck and cover anytime soon.

Continue reading “Your Phone Is Now Helping To Detect Earthquakes”

Hackaday Podcast 042: Capacitive Earthquakes, GRBL On ESP32, Solenoid Engines, And The TI-99 Space Program

Hackaday Editors Elliot Williams and Mike Szczys talk turkey on the latest hacks. Random numbers, art, and electronic geekery combine into an entropic masterpiece. We saw Bart Dring bring new life to a cool little multi-pen plotter from the Atari age. Researchers at UCSD built a very very very slow soft robot, and a broken retrocomputer got a good dose of the space age. A 555 is sensing earthquakes, there’s an electric motor that wants to drop into any vehicle, and did you know someone used to have to read the current time into the telephone ad nauseam?

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Direct download (59 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 042: Capacitive Earthquakes, GRBL On ESP32, Solenoid Engines, And The TI-99 Space Program”

Watch Earthquake Roll Across A Continent In Seismograph Visualization Video

If your only exposure to seismologists at work is through film and television, you can be forgiven for thinking they still lay out rolls of paper to examine lines of ink under a magnifying glass. The reality is far more interesting in a field that has eagerly adopted all available technology. A dramatic demonstration of modern earthquake data gathering, processing, and visualization was Tweeted by @IRIS_EPO following a central California quake on July 4th, 2019. In this video can see the quake’s energy propagate across the continental United States in multiple waves of varying speed and intensity. The video is embedded below, but click through to the Twitter thread too as it has a lot more explanation.

The acronym IRIS EPO expands out to Incorporated Research Institutions for Seismology, Education and Public Outreach. We agree with their publicity mission; more people need to know how cool modern seismology is. By combining information from thousands of seismometers, we could see forces that we could not see from any individual location. IRIS makes seismic data available to researchers (or curious data science hackers) in a vast historical database or a real time data stream. Data compilations are presented in several different forms, this particular video is a GMV or Ground Motion Visualization. Significant events like the 4th of July earthquake get their own GMV page where we can see additional details, like the fact this visualization compiled data from 2,132 stations.

If this stirred up interest in seismology, you can join in the fun of networked seismic data. A simple seismograph can be built from quite humble components, but of course there are specially designed chips for the task as well.

Continue reading “Watch Earthquake Roll Across A Continent In Seismograph Visualization Video”

Earthquake Detector Could Have Helped During Quakepocalypse

[Andrea] built a seismic wave detector that warns of a possible impending earthquake. Because P waves travel much faster than the “make everything shake” S waves, building a device that detects P waves serves as an early warning system that alerts building occupants to go under a door frame. [Andrea]’s build detects these fast-moving P waves and only took an hour to make.

Last August, those of us on the east coast of the US had to live through Quakepocalypse, a magnitude 5.9 earthquake centered around Middle of Nowhere, Virginia. For those of us who have decided to stay, rebuild, and put our garden chairs upright again (so brave…), [Andrea]’s build could have been very useful.

The mechanics of the build is very simple: a pair of springs and levers are electrically wired together so that whenever there’s a sudden shock, a buzzer goes off. It’s very similar to an ancient Chinese earthquake detector that detects P waves by dropping a ball into a frog’s mouth.

While we’re not sure if a few of [Andrea]’s devices would be needed to detect P waves coming in off-axis, the build is simple enough to build dozens of them. Check out the video of the build in action after the break here.


DIY Earthquake Detector

Some animals seem to be able to detect earthquakes. Some animals also navigate using the earth’s magnetic field. From the idea that there may be some relationship with these two things, this experimental earthquake detector was born.  [Bob Davis] built this device, which uses an Arduino and several Hall effect sensors to detect and record magnetic fields. Possibly after enough data is recorded, a correlation can be found between the two phenomena.

The sensors in this device are arranged to measure magnetism in four directions as well as in the vertical axis. Part of the idea behind this is that before an earthquake the quartz in the ground moves producing a magnetic field.

In the video after the break, Bob gives some background on the theory behind this device and talks about the first version (built way back in the year 2000) which uses a PC for control and recording. Really interesting stuff so be sure to listen to Bob’s explanation after the break. Continue reading “DIY Earthquake Detector”