Machine Learning Does Its Civic Duty By Spotting Roadside Litter

If there’s one thing that never seems to suffer from supply chain problems, it’s litter. It’s everywhere, easy to spot and — you’d think — pick up. Sadly, most of us seem to treat litter as somebody else’s problem, but with something like this machine vision litter mapper, you can at least be part of the solution.

For the civic-minded [Nathaniel Felleke], the litter problem in his native San Diego was getting to be too much. He reasoned that a map of where the trash is located could help municipal crews with cleanup, so he set about building a system to search for trash automatically. Using Edge Impulse and a collection of roadside images captured from a variety of sources, he built a model for recognizing trash. To find the garbage, a webcam with a car window mount captures images while driving, and a Raspberry Pi 4 runs the model and looks for garbage. When roadside litter is found, the Pi uses a Blues Wireless Notecard to send the GPS location of the rubbish to a cloud database via its cellular modem.

Cruising around the streets of San Diego, [Nathaniel]’s system builds up a database of garbage hotspots. From there, it’s pretty straightforward to pull the data and overlay it on Google Maps to create a heatmap of where the garbage lies. The video below shows his system in action.

Yes, driving around a personal vehicle specifically to spot litter is just adding more waste to the mix, but you’d imagine putting something like this on municipal vehicles that are already driving around cities anyway. Either way, we picked up some neat tips, especially those wireless IoT cards. We’ve seen them used before, but [Nathaniel]’s project gives us a path forward on some ideas we’ve had kicking around for a while.

Continue reading “Machine Learning Does Its Civic Duty By Spotting Roadside Litter”

Recognising Bird Sounds With A Microcontroller

Machine learning is an incredible tool for conservation research, especially for scenarios like long term observation, and sifting through massive amounts of data. While the average Hackaday reader might not be able to take part in data gathering in an isolated wilderness somewhere, we are all surrounded by bird life. Using an Arduino Nano 33 BLE Sense and an online machine learning tool, a team made up of [Errol Joshua], [Ajith KJ], [Mahesh Nayak], and [Supriya Nickam] demonstrate how to set up an automated bird call classifier.

The Arduino Nano 33 BLE Sense  is a fully featured little dev board that features the very capable NRF52840 microcontroller with Bluetooth Low Energy, and a variety of onboard sensors, including a microphone. Training a machine learning model might seem daunting to many people, but online services like Edge Impulse makes the process very beginner-friendly. Once you start training your own models for specific applications, you quickly learn that building and maintaining a high quality dataset is often the most time-consuming part of machine learning. Fortunately for this use case, a massive online library of bird calls from all over the world is available on Xeno-Canto. This can be augmented with background noise from the area where the device will be deployed to reduce false-positives. Edge Impulse will train the model using the provided dataset, and generate a library that can be used on the Arduino with one of the provided sample sketches to log and send the collected data to a server. Then comes the never ending process of iteratively testing and improving the recognition model. Edge Impulse is also compatible with more powerful devices such as the Raspberry Pi and Jetson Nano if you want more intensive machine learning models.

We’ve also seen the exact same setup get used for smart baby monitor. If you want to learn more, be sure to watch at [Shawn Hymel]’s talk from the 2020 Remoticon about machine learning on microcontrollers. Continue reading “Recognising Bird Sounds With A Microcontroller”

Remoticon Video: How To Use Machine Learning With Microcontrollers

Going from a microcontroller blinking an LED, to one that blinks the LED using voice commands based on a data set that you trained on a neural net work is a “now draw the rest of the owl” problem. Lucky for us, Shawn Hymel walks us through the entire process during his Tiny ML workshop from the 2020 Hackaday Remoticon. The video has just now been published and can be viewed below.

This is truly an end-to-end Hello World for getting machine learning up and running on a microcontroller. Shawn covers the process of collecting and preparing the audio samples, training the data set, and getting it all onto the microcontroller. At the end of two hours, he’s able to show the STM32 recognizing and responding to two different spoken words. Along the way he pauses to discuss the context of what’s happening in every step, which will help you go back and expand in those areas later to suit your own project needs.

Continue reading “Remoticon Video: How To Use Machine Learning With Microcontrollers”

Let This Crying Detecting Classifier Offer Some Much Needed Reprieve

Baby monitors are cool, but [Ish Ot Jr.] wanted his to only transmit sounds that required immediate attention and filter any non-emergency background noise. Posed with this problem, he made a baby monitor that would only send alerts when his baby was crying.

For his project, [Ish] used an Arduino Nano 33 BLE Sense due to its built-in microphone, sizeable RAM for storing large chunks of data, and it’s BLE capabilities for later connecting with an app. He began his project by collecting background noise using Edge Impulse Studio’s data acquisition functionality. [Ish] really emphasized that Edge Impulse was really doing all the work for him. He really just needed to collect some test data and that was mostly it on his part. The work needed to run and test the Neural Network was taken care of by Edge Impulse. Sounds handy, if you don’t mind offloading your data to the cloud.

[Ish] ended up with an 86.3% accurate classifier which he thought was good enough for a first pass at things. To make his prototype a bit more “finished”, he added some status LEDs, providing some immediate visual feedback of his classifier and to notify the caregiver. Eventually, he wants to add some BLE support and push notifications, alerting him whenever his baby needs attention.

We’ve seen a couple of baby monitor projects on Hackaday over the years. [Ish’s] project will most certainly be a nice addition to the list.