Machine Learning Does Its Civic Duty By Spotting Roadside Litter

If there’s one thing that never seems to suffer from supply chain problems, it’s litter. It’s everywhere, easy to spot and — you’d think — pick up. Sadly, most of us seem to treat litter as somebody else’s problem, but with something like this machine vision litter mapper, you can at least be part of the solution.

For the civic-minded [Nathaniel Felleke], the litter problem in his native San Diego was getting to be too much. He reasoned that a map of where the trash is located could help municipal crews with cleanup, so he set about building a system to search for trash automatically. Using Edge Impulse and a collection of roadside images captured from a variety of sources, he built a model for recognizing trash. To find the garbage, a webcam with a car window mount captures images while driving, and a Raspberry Pi 4 runs the model and looks for garbage. When roadside litter is found, the Pi uses a Blues Wireless Notecard to send the GPS location of the rubbish to a cloud database via its cellular modem.

Cruising around the streets of San Diego, [Nathaniel]’s system builds up a database of garbage hotspots. From there, it’s pretty straightforward to pull the data and overlay it on Google Maps to create a heatmap of where the garbage lies. The video below shows his system in action.

Yes, driving around a personal vehicle specifically to spot litter is just adding more waste to the mix, but you’d imagine putting something like this on municipal vehicles that are already driving around cities anyway. Either way, we picked up some neat tips, especially those wireless IoT cards. We’ve seen them used before, but [Nathaniel]’s project gives us a path forward on some ideas we’ve had kicking around for a while.

Continue reading “Machine Learning Does Its Civic Duty By Spotting Roadside Litter”

Discarded Plastic Laser-Cut And Reassembled

The longevity of plastic is both a blessing and a curse. On the one hand, it’s extremely durable, inexpensive, and easy to work with, but it also doesn’t biodegrade and lasts indefinitely in the environment when not disposed of properly. While this can mean devastating impacts to various ecosystems, it can also be a benefit if you happen to pick this plastic up and also happen to have a laser cutter around.

After cleaning and sorting plastic that they had found from various places, including scraps from a 3D printing facility, the folks at [dinalab] set about turning waste plastic into something that would be usable once more. After sorting it they shredded it and then melted it into sheets. They found that a sandwich press yielded the best results, as it kept the plastic at a low enough temperature to keep it from burning. Once its off of the press and properly cooled, the flat sheets of plastic can be sent to the laser cutter to be made into whatever useful thing they happen to need.

Not only does this process reuse plastic that would otherwise end up in the landfill (or worse, the ocean), it can also reuse plastic from itself since the scraps can be re-melted back into sheets. Plastic does lose some of its favorable material properties with repeated heat cycles, but we’d have to imagine this is negligible for the types of things that [dinalab] is creating. Of course, you can always skip the heat cycles entirely and turn waste plastic directly into 3D printer filament instead.

Continue reading “Discarded Plastic Laser-Cut And Reassembled”

Garbage Can Takes Itself Out

Home automation is a fine goal but typically remains confined to lights, blinds, and other things that are relatively stationary and/or electrical in nature. There is a challenge there to be certain, but to really step up your home automation game you’ll need to think outside the box. This automated garbage can that can take itself out, for example, has all the home automation street cred you’d ever need.

The garbage can moves itself by means of a scooter wheel which has a hub motor inside and is powered by a lithium battery, but the real genius of this project is the electronics controlling everything. A Raspberry Pi Zero W is at the center of the build which controls the motor via a driver board and also receives instructions on when to wheel the garbage can out to the curb from an Nvidia Jetson board. That board is needed because the creator, [Ahad Cove], didn’t want to be bothered to tell his garbage can to take itself out or even schedule it. He instead used machine learning to detect when the garbage truck was headed down the street and instruct the garbage can to roll itself out then.

The only other thing to tie this build together was to get the garage door to open automatically for the garbage can. Luckily, [Ahad]’s garage door opener was already equipped with WiFi and had an available app, unbeknownst to him, which made this a surprisingly easy part of the build. If you have a more rudimentary garage door opener, though, there are plenty of options available to get it on the internets.

Continue reading “Garbage Can Takes Itself Out”

A Really Garbage Project

No matter who you are,  you produce garbage of some kind or another. Two students decided they wanted to create a smart garbage can that could alert them when the can is full or even when it is stinky.

We will go on on the record: we didn’t know that an alcohol sensor could tell if your garbage is stinky, so if that works, that’s a new one on us. However, it makes a certain kind of sense because garbage ferments. We thought garbage smelled because of hydrogen sulfide and methane.

Trash cans have a tough life, so if you really want to duplicate this, you’ll probably want to mount things a bit more securely. The software, however, runs everything through a cloud service and from there can use Blynk for a phone app and IFTTT to ship things to a spreadsheet, should you care to track your garbage history statistics.

Continue reading “A Really Garbage Project”

Automate The Freight: The Robotic Garbage Man

When I started the Automate the Freight series, my argument was that long before the vaunted day when we’ll be able to kick back and read the news or play a video game while our fully autonomous car whisks us to work, economic forces will dictate that automation will have already penetrated the supply chain. There’s much more money to be saved by carriers like FedEx and UPS cutting humans out of the loop while delivering parcels to homes and businesses than there is for car companies to make by peddling the comfort and convenience of driverless commuting.

But the other end of the supply chain is ripe for automation, too. For every smile-adorned Amazon package delivered, a whole bunch of waste needs to be toted away. Bag after bag of garbage needs to go somewhere else, and at least in the USA, municipalities are usually on the hook for the often nasty job, sometimes maintaining fleets of purpose-built trucks and employing squads of workers to make weekly pickups, or perhaps farming the work out to local contractors.

Either way you slice it, the costs for trash removal fall on the taxpayers, and as cities and towns look for ways to stretch those levies even further, there’s little doubt that automation of the waste stream will start to become more and more attractive. But what will it take to fully automate the waste removal process? And how long before the “garbage man” becomes the “garbage ‘bot”?

Continue reading “Automate The Freight: The Robotic Garbage Man”

Waste Shark Aims To Clean Our Harbours And Oceans

Drones are adding functionality to our everyday lives, and automation is here to help humanity whether we’re ready for it or not. In a clever combination of the two, [Richard Hardiman] of RanMarine has developed small drone-boats that scoop up garbage from the ocean — he calls them ‘Waste Sharks.’

The two models — slim and fatboy — aim to collect up to 1,100 pounds of garbage apiece in the ‘mouths’ just below the water’s surface. The Waste Sharks are still restricted to remote control and are only autonomous when traveling between waypoints, but one can see how this technology could evolve into the “Wall-E of water.”

Continue reading “Waste Shark Aims To Clean Our Harbours And Oceans”

Hackaday Prize Entry: The Internet Of Garbage

The Internet of Things is garbage. While the most visible implementations of the Internet of Things are smart lights that stop working because the company responsible for them folded, or smart thermostats that stop working because providing lifetime support wasn’t profitable, IoT could actually be useful, albeit in devices less glamorous than a smart toaster. Smart meters are a great idea, and so is smart trash. That’s what [mikrotron] and company are entering into the Hackaday Prize – smart trash cans – and it’s not as dumb as spending $40 on a light bulb.

The idea behind the Internet of Trash is to collect data on how full a trashcan is, and publish that data to the Internet. This information will be used by a city’s trash collectors and recycling agencies to know when it’s time to collect the garbage.

The hardware for the Internet of Garbage needs to know how full a can is, and for that the team has turned to an ultrasonic sensor pointed down into the garbage. The amount of trash in a can is pinged once a day, and the information is sent over the Internet via a GSM network. Additionally, the GPS coordinates and a unique ID are delivered to the server, with everything ultimately powered by a solar panel.

The future of the Internet of Things isn’t putting Twitter in a coffee maker, it’s all about infrastructure, whether that’s power, solar freakin’ roadways, or the trash. We’re glad to see a useful application of a billion smart things, and the Internet of Trash makes for a great Hackaday Prize entry.