Fire Up The 3D Printer And Build Yourself A Spiderbot

Robots are cool, so check out [Atlin Anderson]’s Spiderbot (video, embedded below) which can be made with 3D printed parts, hobby servos, and ESP32-CAM module for control and a first-person view. Looking for a new project? All of the design details are shared online if you’d like to make a hexapod of your own.

We like the effort [Atlin] put into minimizing hardware fasteners in the design of the 3D-printed parts, and aiming for a modular concept that leaves things open for expansion or modification. There’s plenty of room in the chassis for more hardware, with a convenient peg system for snap-fitting assemblies.

Control is done wirelessly via a mobile phone with an app created using the MIT App Inventor, a fantastic tool that is still going strong as a capable and accessible way to make an Android app.

As for the ESP32-CAM module that drives it all, it is a great piece of hardware with capabilities that are leveraged very nicely here. We’ve seen other projects make good use of it as well, from this 1/64 scale micro RC car to an oddball tripod camera robot.

Continue reading “Fire Up The 3D Printer And Build Yourself A Spiderbot”

Dodge, The Weird Tripod Robot

[hannu_hell] created Dodge as a “novel design of tripod.” It’s a small robotic device quite unlike anything else we’ve seen of late. It’s intended to be a self-mobile camera platform that can move itself around to capture footage as needed.

Dodge is essentially a two-legged robot with a large flat “foot” in the center. When stationary, it rests on this flat foot. When it needs to move, it can raise this center foot and rest on its two outside legs. If Dodge needs to move, it can crab back and forth in a line with these two legs. If it wants to turn, it can return to resting on its center foot, and pivot about its central axis. It can thus rotate itself and use its two outer legs to move further as needed.

Dodge does all this while carrying an ESP32 Cam module. The idea is that it’s a small mobile tripod platform with a live camera feed. It reminds us of various small monitoring robots from cartoons and anime.

Ultimately, it’s an interesting take on robot locomotion. Rather than walking with two legs or four legs and dynamic stability, it takes full advantage of static stability instead.

We’ve seen some wild roboticized camera rigs over the years. Video after the break.

Continue reading “Dodge, The Weird Tripod Robot”

Hot Wheel Car Becomes 1/64 Scale Micro RC Car, Complete With Camera

If you enjoy watching skilled assembly of small mechanical systems with electronics to match, then make some time to watch [Max Imagination] transform a Hot Wheels car into a 1/64th scale RC car complete with video FPV video feed. To say the project took careful planning and assembly would be an understatement, and the results look great.

The sort of affordable electronics available to hobbyists today opens up all kinds of possibilities, but connecting up various integrated modules brings its own challenges. This is especially true when there are physical constraints such as fitting everything into an off-the-shelf 1/64 scale toy car.

There are a lot of interesting build details that [Max] showcases, such as rebuilding a tiny DC motor to have a longer shaft so that it can drive both wheels at once. We also liked the use of 0.2 mm thick nickel strips (intended for connecting cells in a battery pack) as compliant structural components.

There are actually two web servers being run on the car. One provides an interface for throttle and steering (here’s the code it uses), and the other takes care of the video feed with ESP32-CAM sending a motion jpeg stream. [Max]’s mobile phone is used to control the car, and a second device goes into an old phone-based VR headset to display the FPV video feed.

Circuit diagrams and code are available for anyone wanting to perhaps make a similar project. We’ve seen micro RC builds of high quality before, but integrating an FPV camera kicks things up a notch. Want even more complex builds? All the rules change when weight reduction is a non-negotiable #1 priority. Check out a micro RC plane that weighs under three grams and get a few new ideas.

Continue reading “Hot Wheel Car Becomes 1/64 Scale Micro RC Car, Complete With Camera”

A Digital Camera For The 1984 Market

Digital cameras are a ubiquitous consumer and professional product here in 2023, and because of the wide availability of parts it’s relatively straightforward to construct one for yourself. Four decades ago though, film was king, but that hasn’t stopped [Georg Lukas] from building a digital camera for the 1984 market. The hardware is definitely from recent years, the extremely affordable ESP32-cam board that many of us will have worked with already. Meanwhile the 1984 part lies in the recording format, it makes EGA 16-colour low-res pictures and stores them in the archaic TGA file format.

A low-res camera is fun, but there are two other angles on this which are definitely worth some time. The first is that his description and code are worth a read for anyone with an interest in programming an ESP32 camera, while the second invites us to consider whether such a camera could have been made using parts available in 1984. We remember camera peripherals for 8-bit microcomputers which were a C-mount lens positioned over a decapped RAM chip, and thus we can’t help wondering whether an RGB split to three of those sensors could have been constructed. Whether a 6502 or a Z80 with 64k of memory could have processed the three images into one is another matter, but at least if any of you want to try there’s a handy 1984 computer still popping up on eBay.

Flipper Zero Mayhem Hat Adds Camera, More Radios

For a device advertised as the “Multi-tool Device for Hackers”, the Flipper Zero already offers a considerable list of onboard capabilities. But some hard decisions had to be made to get the retail price down, so features like WiFi and Bluetooth had to be left off. Luckily, there’s an expansion interface along the top of the device which makes it possible to plug in additional hardware.

One of those expansions is the “Mayhem Hat” from [Erwin Ried]. This board adds many requested features to the Flipper Zero, as well as some that might not seem as obvious. The addition of an ESP32-CAM brings WiFi and Bluetooth to the party, while also unlocking access to the highly-capable ESP32Marauder firmware and the plethora of security research tools therein.

But the camera also enables some interesting features, such as motion detection and the ability to read QR codes. It even lets you use the Flipper as an impromptu digital camera, complete with an onscreen viewfinder reminiscent of the Game Boy Camera.

What’s more, the Mayhem Hat features its own expansion capabilities. There’s a spot to plug in either a CC1101 or NRF24l01 radio module, both of which are supported by community developed plugins that allow the user to sniff out and hijack signals. There are also extra pins for connecting your own sensors or hardware. In the demo video below you can see the device automatically detect the popular DHT11 environmental sensor and display the current temperature and humidity readings.

[Erwin] has the Mayhem Hat up for sale on Tindie, but as of this writing, is currently out of stock. Apparently, demand for the add-on boards is just as high as for the Flipper Zero itself — not a huge surprise, given the excitement we saw around this platform during its $4.8 million Kickstarter campaign.

Continue reading “Flipper Zero Mayhem Hat Adds Camera, More Radios”

RatPack Is A Wearable Fit For A Rodent

Rats are often seen as pests and vermin, but they can also do useful jobs for us, like hunting for landmines. To aid in their work, [kjwu] designed the RatPack, a wearable device that lets these valiant rats communicate with their handlers.

The heart of the build is an ESP32-CAM board, which combines the capable wireless-enabled microcontroller with a small lightweight camera. It’s paired with a TinyML machine learning board, and it’s all wrapped up in a 3D printed enclosure that serves as a backpack to fit African Giant Pouched rats.

The RatPack can provide a live video feed. However, its main purpose is to track the rat’s movements through the use of an accelerometer. This data is then fed to the machine learning subsystem, which analyzes it to detect certain gestures the rats have been trained to make. The idea is that when the rat identifies an object of interest, such as a landmine, it will perform a predetermined gesture. The RatPack would then detect this, and transmit a signal to the rat’s handlers. Given a rat’s limbs are all on the bottom of its body, this approach is useful. It’s kind of hard to ask a rat to press a button on its own back, after all.

Finding and carefully disposing of unexploded ordnance is a problem facing many societies around the world. We’re lucky in many cases that the rats are helping out with this difficult and dangerous job.

The project's hardware, including the ESP32 camera module, stuffed into the GoPro-intended waterproof shell. The camera portion of the ESP32 module sticks out exactly where the GoPro's camera would be. To the left, a hacked ESP32-CAM module is shown.

Hackaday Prize 2022: Solar-Harvesting ESP32 Camera Is Waterproof, Repeatable

[alberto nunez] shows off his sleek build of a solar-harvesting ESP32 camera – waterproof, somewhat energy-efficient, and able to be built by more-or-less anyone. For that, he’s chosen fairly jellybean components – an ESP32-CAM module with a matching protoboard, a small solar cell, a LiFePO4 battery, and a waterproofed GoPro shell that all of these parts neatly fit into.

A BQ25504 energy harvesting chip is used to ensure the ‘solar’ part of the project can meaningfully contribute to the project’s power budget, with energy otherwise mainly provided by the LiFePo4 battery. Since this battery’s nominal voltage is 3.2 V, it can be wired straight to ESP32’s power input and there’s no need for a regulator – thus, that one got mercilessly desoldered. [alberto] has also modded the board using a FET to gate power to the ESP32-CAM module’s camera, with all of these hacks bringing the board’s deep sleep current from 2.8 mA to 0.8 mA. Not great for a low-power device, but not terrible for something you can build so easily. Plus, it’s waterproof, dust-resistant, and quite robust!

These ESP32 camera modules are seriously nifty – we see them put to good use on the regular. Whether you need to detect motion in your Halloween project, decode your water meter readings, or perhaps merely a security camera, it’s worth having a few in your toolbox. Maybe even pick up a programming helper for these while you’re at it!