We appear to be edging ever closer to a solid statement of “We are not alone” in the universe with this week’s announcement of the detection of biosignatures in the atmosphere of exoplanet K2-18b. The planet, which is 124 light-years away, has been the focus of much attention since it was discovered in 2015 using the Kepler space telescope because it lies in the habitable zone around its red-dwarf star. Initial observations with Hubble indicated the presence of water vapor, and follow-up investigations using the James Webb Space Telescope detected all sorts of goodies in the atmosphere, including carbon dioxide and methane. But more recently, JWST saw signs of dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), organic molecules which, on Earth, are strongly associated with biological processes in marine bacteria and phytoplankton.
exoplanet16 Articles
Avi Loeb And The Interstellar Lottery
Except for rare occasions, I don’t play the lottery. Like many of you, I consider state-run lotteries to be a tax paid only by people who can’t do math. That’s kind of arrogant coming from a guy who chose to go into biology rather than engineering specifically because he’s bad at math, but I know enough to know that the odds are never in your favor, and that I’d rather spend my money on just about anything else.
But I’m beginning to get the feeling that, unlike myself and many others, Harvard professor Avi Loeb just might be a fan of playing the lottery. That’s not meant as a dig. Far from it. In fact, I readily concede that a physicist with an endowed chair at Harvard working in astrophysics knows a lot more about math than I do. But given his recent news splashes where he waxes on about the possibility that Earth has been treated to both near misses and direct hits from interstellar visitors, I’m beginning to think that maybe I’m looking at the lottery backward.
NASA Found Another Super Earth With Tantalizing Possibilities
Earth is a rather special place, quite unlike the other planets in the solar system. It’s nestled at the perfect distance from the sun to allow our water to remain liquid and for life to flourish in turn. It’s a rare thing; most planets are either too close and scorching hot, or too far and freezing cold.
NASA is always on the hunt for planets like our own, and recently found a new super-Earth by the name of TOI-715b. The planet is larger than our own, but it’s position and makeup mean that it’s a prime candidate for further study. Let’s take a look at how NASA discovered this planet, and why it’s special.
Continue reading “NASA Found Another Super Earth With Tantalizing Possibilities”
The Path To Profiling Extraterrestrial Atmospheres With Astrophotonics
A major part of finding extraterrestrial life is to be able to profile the atmosphere of any planets outside of our solar system. This is not an easy task, as these planets are usually found through the slight darkening of their star as they pass in front of it (transition). Although spectroscopy is the ideal way to profile the chemical composure of such a planet, having a massive, extremely bright star right next to the planet is more than enough to completely overpower the faint light reflecting off the planet’s surface and through its atmosphere. This is a major issue that the upcoming Habitable Exoplanet Imaging Mission (HabEx, also called the Habitable Worlds Observatory, or HWO) hopes to address using a range of technologies, including a coronagraph that should block out most of the stellar glare.
While this solves much of the issue, there are still a range of issues which the new field of astrophotonics seeks to address, as detailed in a recent paper by Nemanja Jovanovic and colleagues. This involves not only profiling chemical compositions, but also increasing the precision when monitoring for planet transit events using e.g. semiconductors-based laser frequency combs. These are generally combined with a spectral flattener, which in experimental on-chip form are significantly less bulky than previous setups, to the point where they don’t necessarily have to be Earth-based.
Continue reading “The Path To Profiling Extraterrestrial Atmospheres With Astrophotonics”
Hackaday Links: March 26, 2023
Sad news in the tech world this week as Intel co-founder Gordon Moore passed away in Hawaii at the age of 94. Along with Robert Noyce in 1968, Moore founded NM Electronics, the company that would later go on to become Intel Corporation and give the world the first commercially available microprocessor, the 4004, in 1971. The four-bit microprocessor would be joined a few years later by the 8008 and 8080, chips that paved the way for the PC revolution to come. Surprisingly, Moore was not an electrical engineer but a chemist, earning his Ph.D. from the California Institute of Technology in 1954 before his postdoctoral research at the prestigious Applied Physics Lab at Johns Hopkins. He briefly worked alongside Nobel laureate and transistor co-inventor William Shockley before jumping ship with Noyce and others to found Fairchild Semiconductor, which is where he made the observation that integrated circuit component density doubled roughly every two years. This calculation would go on to be known as “Moore’s Law.”
Hackaday Links: March 19, 2023
We get results! Well, sort of. You may recall that in this space last week we discussed Ford’s plans to exclude AM reception on the infotainment systems of certain of their cars starting in 2024. We decried the decision, not for the loss of the sweet, sweet content that AM stations tend to carry — although we always enjoyed “Traffic on the 8s” back in our dismal days of daily commuting — but rather as a safety concern, because AM radio can reach almost the entire US population with emergency information using just 75 stations. To our way of thinking, this makes AM radio critical infrastructure, and eliminating it from motor vehicles is likely to have unintended consequences. Now it seems like there’s some agreement with that position, as former administrators of FEMA (Federal Emergency Management Administration; and no, not FEDRA) have gotten together to warn about the dangers of deleting AM from cars. Manufacturers seem to be leaning into the excuse that EVs emit a lot of radio frequency interference, rendering static-sensitive AM receivers less useful than other, more profitable less susceptible modes, like digital satellite radio. That seems like a red herring to us, but then again, the most advanced infotainment option in any car we’ve ever owned is a CD player, so it’s hard for us to judge.
Hackaday Links: February 26, 2023
It’s probably safe to say that most of us have had enough of the Great Balloon Follies to last the rest of 2023 and well beyond. It’s been a week or two since anything untoward was spotted over the US and subsequently blasted into shrapnel, at least that we know of, so we can probably put this whole thing behind us.
But as a parting gift, we present what has to be the best selfie of the year — a photo by the pilot of a U-2 spy plane of the balloon that started it all. Assuming no manipulation or trickery, the photo is remarkable; not only does it capture the U-2 pilot doing a high-altitude flyby of the balloon, but it shows the shadow cast by the spy plane on the surface of the balloon.
The photo also illustrates the enormity of this thing; someone with better math skills than us could probably figure out the exact size of the balloon from the apparent size of the U-2 shadow, in fact.