Laser Cut Mechanical Logic Gates

When you create logic circuits using ICs or FPGAs, you can’t easily visualize their operation without special tools. But if you’ve ever seen a mechanical computer (like the Computer History Museum’s Babbage engine) operate, you know you don’t have that problem. Just like it is fascinating to watch a 3D printer or CNC machine, watching mechanical logic gates work can be addictive.

[Anthony] wanted to build some mechanical logic gates and set out designing them using Inkscape. Unlike some common mechanical gate schemes, [Anthony’s] gates use gears to implement the logic operations. He sent the designs off to a laser cutter service and got back parts cut from 3mm acrylic.

Continue reading “Laser Cut Mechanical Logic Gates”

Show Us Your Human Interface; Win Laser Cutting Time

Our newest Hot List is Human Interfaces. This is anything you’ve designed into your project to interact with people. And we want to see it all! Do you have something bristling with buttons, boasting many LCD screens, hosting controls organized with the principles of Feng Shui, or intuitively voice activated? Show us the user interface you’re proud of and you could win one of thirty $100 gift cards for Ponoko laser cutting service.

We’re in the thick of judging the Wheels, Wings, and Propellers hot list from this week. We’ll be announcing the rankings in the coming days, but for now you need to get your project onto the Your Human Interface hot list. Here’s what you need to do before Thursday, 7/16/15:

Good luck, and per usually we’d like to encourage you to Vote this week. It’s a great way to explore the entries in this year’s 2015 Hackaday Prize, and you just might win $1000 from the Hackaday Store just for voting!

The 2015 Hackaday Prize is sponsored by:

laser engraved color

Laser Engraving In Color?

Here’s a fantastic way to add a new dynamic to your laser cut and engraved parts. Did you know it is possible to color your engravings on acrylic? It’s kind of one of those moments where you go “Why didn’t I think of that?”

[Frankie Flood] works at the Digital Craft Research Lab (DCRL for short), which is kind of like a hackerspace for the University of Wisconsin — complete with CNC routers, lasers, 3D printers, and all your basic manufacturing tools.  [Lionel Rocheleau], one of his lab technicians at DCRL was interested in doing some experiments with the laser cutter, so they came up with this experiment…

Continue reading “Laser Engraving In Color?”

3D Printering: Laser Cutting 3D Objects

3D printing can create just about any shape imaginable, but ask anyone who has babysat a printer for several hours, and they’ll tell you 3D printing’s biggest problem: it takes forever to produce a print. The HCI lab at Potsdam University has some up with a solution to this problem using the second most common tool found in a hackerspace. They’re using a laser cutter to speed up part production by a factor of twenty or more.

Instead of printing a 3D file directly, this system, Platener, breaks a model down into its component parts. These parts can then be laser cut out of acrylic or plywood, assembled, and iterated on much more quickly.

You might think laser-cut parts would only be good for flat surfaces, but with techniques like kerf bending, and stacking layer upon layer of material on top of each other, just about anything that can be produced with a 3D printer is also possible with Platener.

To test their theory that Platener is faster than 3D printing, the team behind Platener downloaded over two thousand objects from Thingiverse. The print time for these objects can be easily calculated for both traditional 3D printing and the Platener system, and it turns out Platener is more than 20 times faster than printing more than thirty percent of the time.

You can check out the team’s video presentation below, with links to a PDF and slides on the project’s site.

Thanks [Olivier] for the tip.

Continue reading “3D Printering: Laser Cutting 3D Objects”

Laser-Cut Clock Kicks Your CAD Tools To The Curb And Opts For Python

In a world deprived of stock hardware other than #6-32 bolts and sheets and sheets of acrylic, [Lawrence Kesteloot] took it upon himself to design and build a laser-cut pendulum clock. No Pricey CAD programs? No Problem. In a world where many fancy CAD tools can auto-generate gear models, [Lawrence] went back to first principles and wrote scripts to autogenerate the gear profiles. Furthermore, not only can these scripts export SVG files for the entire model for easy laser cutting, they can also render a 3D model within the browser using Javascript.

Given the small selection of materials, the entire project is a labor of love. Even the video (after the break) glosses over the careful selection of bearings, bolt-hole spacing, and time-sensitive gear ratios, each of which may be an easy macro in other CAD programs that [Lawrence], in this case, needed to add himself.

Finally, the entire project is open source and up for download on the Githubs. It’s not every day we can build ourselves a pendulum clock with a simple command-line-incantation to

make cut

Thanks for the tip, [Bartgrantham]!

Continue reading “Laser-Cut Clock Kicks Your CAD Tools To The Curb And Opts For Python”

Automated CAD Design For Enclosures

[Jon] a.k.a. [Pedantite] recently added small-scale laser cutting to his business and thought about using that laser cutter to add some value to some of the many project designs he creates. Yes, this means custom laser cut enclosures, but how to go about it? [Jon] loves automation, and that can only mean automated design of laser cut enclosures by reading the board files from his project library.

The idea of automating the design of plastic enclosures was to read the design files, figure out the dimensions of the board and where the mounting holes go, and generate a file for the laser cutter. The weapon of choice was OpenSCAD, a design language that can be highly parameterized, read external design files, and spit out proper DXF files for laser cutting.

[Jon] set up his toolchain as a Python script that reads design files, sends parameters off to a .SCAD file, and generates a DXF for the laser cutter. There’s also a bit that generates enough data for Blender to render a 3D image of the finished product, all only from gerbers, a drill file, and a few user variables.

The source for these files haven’t been released yet, but that’s only because it’s in a proof-of-concept stage right now. You can check out an example of a render of one of the cases below.

Continue reading “Automated CAD Design For Enclosures”

A Folding Laser Cutter

Want a laser cutter, but don’t have the space for one? How about a portable machine to engrave and cut wood and plastics? A folding laser cutter solves these problems, and that’s exactly what Red Ant Lasers was showing off last weekend at Maker Faire.

Inside the team’s Origami laser cutter is a 40 Watt CO2 tube, shooting its beam along an entirely enclosed beam path. The beam travels through the body of the machine, out into the folding arm of the machine, and down to whatever material you’ve placed the Origami on. It’s a 40 Watt laser so it will cut plywood and plastics, and as shown in the video above, does a fine job at engraving plywood.

This is a Class 4 laser device operating without any safety glass, but from the short time I spent with the Red Ant team, this is a reasonably safe device. You will need safety glasses if you’re within five feet, but after that, everything (according to OSHA, I think) is safe and not dangerous. Either way, it’s a tool just like a table saw. You don’t see commentors on the Internet complaining about how a spinning metal blade is dangerous all the time, do you?

The Red Ant guys are currently running a Kickstarter for their project, with a complete unit going for $4200. It’s pricier than a lot of other lasers, but not being constrained by the size of a laser cutters enclosure does open up a few interesting possibilities. You could conceivably cut a 4×8 sheet of plywood with this thing, and exceptionally large engravings start looking easy when you have a portable laser cutter.