OSHW Battery Tester Aims To Help Tame Lithium Cells

It’s no exaggeration to say that the development of cheap rechargeable lithium-ion batteries has changed the world. Enabling everything from smartphones to electric cars, their ability to pack an incredible amount of energy into a lightweight package has been absolutely transformative over the last several decades. But like all technologies, there are downsides to consider — specifically, the need for careful monitoring during charging and discharging.

As hardware hackers, we naturally want to harness this technology for our own purposes. But many are uncomfortable about dealing with these high-powered batteries, especially when they’ve been salvaged or come from some otherwise questionable origin. Which is precisely what the Smart Multipurpose Battery Tester from [Open Green Energy] is hoping to address.

Continue reading “OSHW Battery Tester Aims To Help Tame Lithium Cells”

Need High-Power Li-Ion Charging? How About 100 W

Ever want a seriously powerful PCB for charging a Li-Ion pack? Whatever you want it for, [Redherring32] has got it — it’s a board bearing the TPS25750D and BQ25713 chips, that lets you push up to 100 W into your 1S Li-Ion pack through the magic of USB Power Delivery (USB-PD).

Why do you need so much power? Well, when you put together a large amount of Li-Ion cells, this is how you charge it all at once – an average laptop might charge the internal battery at 30 W, and it’s not uncommon for laptop batteries to be dwarfed by hackers’-built packs.

A 4-layer creation peppered with vias, this board’s a hefty one — it’s not often that you see a Li-Ion charger designed to push as much current as possible into a cell, and the chips are smart enough for that. As far as the onboard chips’ capabilities go, the board could handle pack configurations from 1S to 4S, and even act as a USB-PD source — check the IC configuration before you expect to use it for any specific purpose.

Want a simpler charger, even if it’s less powerful? Remember, you can use PPS-capable PD chargers for topping up Li-Ion packs, with barely any extra hardware required.

Lithium-Ion Battery Hotswapping, Polarity, Holders

Everyone loves, and should respect, lithium-ion batteries. They pack a ton of power and can make our projects work better. I’ve gathered a number of tips and tricks about using them over the years, based on my own hacking and also lessons I’ve learned from others.

This installment includes a grab-bag of LiIon tricks that will help you supercharge your battery use, avoid some mistakes, and make your circuits even safer. Plus, I have a wonderful project that I just have to share.

Hot-swapping Cells

When your device runs out of juice, you might not always want to chain yourself to a wall charger. Wouldn’t it be cool if you could just hot-swap cells? Indeed it is, I’ve been doing it for years, it’s dead simple to support, but you can also do it wrong. Let me show you how to do it right!

Recently, a new handheld has hit the hacker markets – the Hackberry Pi. With a Blackberry keyboard and a colour screen, it’s a pretty standard entry into the trend of handheld Pi Zero-backed computers with Blackberry keyboards. It’s not open-source and the author does not plan to open-source its hardware, so I want to make it absolutely clear I don’t consider it hacker-friendly or worth promoting. It did publish schematics, though, and these helped me find a dangerous mistake that the first revision made when trying to implement LiIon battery hot-swap. Continue reading “Lithium-Ion Battery Hotswapping, Polarity, Holders”

Mechanisms of pulse current charging for stabilizing the cycling performance of commercial NMC/graphite LIBs. (Credit: Jia Guo et al., 2024)

Why Pulse Current Charging Lithium-Ion Batteries Extends Their Useful Lifespan

For as much capacity lithium-ion batteries have, their useful lifespan is generally measured in the hundreds of cycles. This degradation is caused by the electrodes themselves degrading, including the graphite anode in certain battery configurations fracturing. For a few years it’s been known that pulsed current (PC) charging can prevent much of this damage compared to constant current (CC) charging. The mechanism behind this was the subject of a recent research article by [Jia Guo] and colleagues as published in Advanced Energy Materials.

Raman spectra of a) as-cycled and b) surface-removed graphite anodes aged under CC and Pulse-2000 charging. FE-SEM images of the cross-sections of graphite electrodes aged with CC (c,d) and Pulse-2000 (e,f) charging. d,f) are edge-magnified images of (c,e). g) shows the micrograph and O and C element mapping of the surface of CC-aged graphite electrode. TEM images of h) fresh, i) CC, and j) Pulse-2000 aged graphite anodes. (Credit: Jia Guo et al., 2024)
Raman spectra of a) as-cycled and b) surface-removed graphite anodes aged under CC and Pulse-2000 charging. FE-SEM images of the cross-sections of graphite electrodes aged with CC (c,d) and Pulse-2000 (e,f) charging. d,f) are edge-magnified images of (c,e). g) shows the micrograph and O and C element mapping of the surface of CC-aged graphite electrode. TEM images of h) fresh, i) CC, and j) Pulse-2000 aged graphite anodes. (Credit: Jia Guo et al., 2024)

The authors examined the damage to the electrodes after multiple CC and PC cycles using Raman and X-ray absorption spectroscopy along with lifecycle measurements for CC and PC charging at 100 Hz (Pulse-100) and 2 kHz (Pulse-2000). Matching the results from the lifecycle measurements, the electrodes in the Pulse-2000 sample were in a much better state, indicating that the mechanical stress from pulse current charging is far less than that from constant current charging. A higher frequency with the PC shows increased improvements, though as noted by the authors, it’s not known yet at which frequencies diminishing returns will be observed.

The use of PC vs CC is not a new thing, with the state-of-the-art in electric vehicle battery charging technology being covered in a 2020 review article by [Xinrong Huang] and colleagues as published in Energies. A big question with the many different EV PC charging modes is what the optimum charging method is to maximize the useful lifespan of the battery pack. This also applies to lithium-metal batteries, with a 2017 research article by [Zi Li] and colleagues in Science Advances providing a molecular basis for how PC charging suppresses the formation of dendrites .

What this demonstrates quite well is that the battery chemistry itself is an important part, but the way that the cells are charged and discharged can be just as influential, with the 2 kHz PC charging in the research by [Jia Guo] and colleagues demonstrating a doubling of its cycle life over CC charging. Considering the amount of Li-ion batteries being installed in everything from smartphones and toys to cars, having these last double as long would be very beneficial.

Thanks to [Thomas Yoon] for the tip.

A finger points at a stack of yellow plastic plates sandwiched together like on a bookshelf. A grey metal rectangle holds the top together and black plastic sticks off to the left. The top of the pack has copper and nickel (or some other silver-colored metal) tabs pointing up out of the assembly.

Tearing Into A Sparky Sandwich

We’re still in the early days of modern EV infrastructure, so minor issues can lead to a full high voltage pack replacement given the lack of high voltage-trained mechanics. [Ed’s Garage] was able to source a Spark EV battery pack that had succumbed to a single bad cell and takes us along for the disassembly of the faulty module.

The Spark EV was the predecessor to the more well-known Chevy Bolt, so its nearly ten year old systems might not reflect the state-of-the-art in EV batteries, but they are certainly more modern than the battery in your great-grandmother’s Baker Electric. The Li-ion polymer pouch cells are sandwiched together with cooling and shock absorbing panels to keep the cells healthy and happy, at least in theory.

In a previous video, [Ed’s Garage] takes apart the full pack and shows how the last 2P16S module has assumed a darker color on its yellow plastic, seeming to indicate that it wasn’t receiving sufficient cooling during its life in the car. It would seem that the cooling plates inside the module weren’t quite up to the task. These cells are destined for other projects, but it doesn’t seem like this particular type of battery module would be too difficult to reassemble and put back in a car as long as you could get the right torque settings for the compression bolts.

If you’re looking for other EV teardowns, might we suggest this Tesla Model S pack or one from a passively-cooled Nissan Leaf?

Continue reading “Tearing Into A Sparky Sandwich”

Disposable Vape Batteries Turned USB Power Bank

It’s another one of those fun quirks about our increasingly cyberpunk world — instead of cigarette butts littering our streets, you’re more likely to find disposable vaporizers that have run out of juice. Unfortunately, while the relatively harmless paper remnants of a cig would eventually just fall apart when exposed to the elements, these futuristic caltrops are not only potentially explosive thanks to their internal lithium-ion battery but aren’t going anywhere without some human intervention.

So do the environment and your parts bin a favor: pick them up and salvage their internal cells. As [N-Ender_3] shows with this build, it’s cheap and easy to turn the remnants of a few vapes into a useful USB power bank. In this case, the enclosure is 3D printed, which makes it particularly form-fitting, but you could just as easily pack the cells into something else if you’re not a fan of extruded plastic.

Continue reading “Disposable Vape Batteries Turned USB Power Bank”

This Open Hardware Li-Ion Charger Skips The TP4056

There’s a good chance that if you build something which includes the ability to top up a lithium-ion battery, it’s going to involve the incredibly common TP4056 charger IC. Now, there’s certainly nothing wrong with that. It’s a decent enough chip, and there are countless pre-made modules out there that make it extremely easy to implement. But if the chip shortage has taught us anything, it’s that alternatives are always good.

So we’d suggest bookmarking this opensource hardware Li-Ion battery charger design from [Shahar Sery]. The circuit uses the BQ24060 from Texas Instruments, which other than the support for LiFePO4 batteries, doesn’t seem to offer anything too new or exciting compared to the standard TP4056. But that’s not the point — this design is simply offered as a potential alternative to the TP4056, not necessarily an upgrade.

[Shahar] has implemented the design as a 33 mm X 10 mm two-layer PCB, with everything but the input and output connectors mounted to the topside. That would make this board ideal for attaching to your latest project with a dab of hot glue or double-sided tape, as there are no components on the bottom to get pulled off when you inevitably have to do some rework.

The board takes 5 VDC as the input, and charges a single 3.7 V cell (such as an 18650) at up to 1 Amp. Or at least, it can if you add a heatsink or fan — otherwise, the notes seem to indicate that ~0.7 A is about as high as you can go before tripping the thermal protection mode.

Like the boilerplate TP4056 we covered recently, this might seem like little more than a physical manifestation of the typical application circuit from the chip’s datasheet. But we still think there’s value in showing how the information from the datasheet translates into the real-world, especially when it’s released under an open license like this.